Human, economic, environmental toll of climate change on the rise: WMO

A shelf cloud in Zadar, Croatia.

Facebook Twitter Print Email

The relentless advance of climate change brought more drought, flooding and heatwaves to communities around the world last year, compounding threats to people’s lives and livelihoods, the UN’s World Meteorological Organization ( WMO ) said on Friday.

WMO latest State of the Global Climate report shows that the last eight years were the eight warmest on record , and that sea level rise and ocean warming hit new highs . Record levels of greenhouse gases caused “planetary scale changes on land, in the ocean and in the atmosphere”.

#ClimateChange shocks increased in 2022. Ocean heat and sea level rise at record levels. Antarctic sea ice hit a new low. Extreme glacier melt in Europe. #StateOfClimate report highlights the huge socio-economic cost of droughts, floods, and heatwaves.🔗 https://t.co/yipNQtrK12 https://t.co/Vnrbe9M8Xl World Meteorological Organization WMO April 21, 2023

The organization says its report, released ahead of this year’s Mother Earth Day , echoes UN Secretary-General António Guterres ’ call for “ deeper, faster emissions cuts to limit global temperature rise to 1.5 degree Celsius”, as well as “ massively scaled-up investments in adaptation and resilience, particularly for the most vulnerable countries and communities who have done the least to cause the crisis”.

WMO Secretary-General, Prof. Petteri Taalas, said that amid rising greenhouse gas emissions and a changing climate, “populations worldwide continue to be gravely impacted by extreme weather and climate events ”. He stressed that last year, “continuous drought in East Africa, record breaking rainfall in Pakistan and record-breaking heatwaves in China and Europe affected tens of millions, drove food insecurity, boosted mass migration, and cost billions of dollars in loss and damage.”

WMO highlights the importance of investing in climate monitoring and early warning systems to help mitigate the humanitarian impacts of extreme weather. The report also points out that today, improved technology makes the transition to renewable energy “cheaper and more accessible than ever” .

Warmest years on record

The State of the Global Climate report complements the Intergovernmental Panel on Climate Change ( IPCC ) Sixth Assessment report released a month ago, which includes data up to 2020.

WMO’s new figures show that global temperatures have continued to rise, making the years 2015 to 2022 the eight warmest ever since regular tracking started in 1850. WMO notes that this was despite three consecutive years of a cooling La Niña climate pattern.

WMO says concentrations of the three main greenhouse gases, which trap heat in the atmosphere – carbon dioxide, methane, and nitrous oxide – reached record highs in 2021, which is the latest year for which consolidated data is available , and that there are indications of a continued increase in 2022.

Indicators ‘off the charts’

According to the report, “melting of glaciers and sea level rise - which again reached record levels in 2022 - will continue to up to thousands of years ”. WMO further highlights that “Antarctic sea ice fell to its lowest extent on record and the melting of some European glaciers was, literally, off the charts”.

Sea level rise, which threatens the existence of coastal communities and sometimes entire countries, has been fuelled not only by melting glaciers and ice caps in Greenland and Antarctica, but also by the expansion of the volume of oceans due to heat. WMO notes that ocean warming has been “particularly high in the past two decades”.

Seasonal floods are a part of life in Chittagong, Bangladesh.

Deadly consequences

The report examines the many socio-economic impacts of extreme weather, which have wreaked havoc in the lives of the most vulnerable around the world . Five consecutive years of drought in East Africa, in conjunction with other factors such as armed conflict, have brought devastating food insecurity to 20 million people across the region.

Extensive flooding in Pakistan caused by severe rainfall in July and August last year killed over 1,700 people, while some 33 million were affected. WMO highlights that total damage and economic losses were assessed at $30 billion, and that by October 2022, around 8 million people had been internally displaced by the floods.

The report also notes that in addition to putting scores of people on the move, throughout the year, hazardous climate and weather-related events “worsened conditions” for many of the 95 million people already living in displacement .

Threat to ecosystems

Environmental impacts of climate change are another focus of the report, which highlights a shift in recurring events in nature, “such as when trees blossom, or birds migrate”. The flowering of cherry trees in Japan has been tracked since the ninth century, and in 2021 the date of the event was the earliest recorded in 1,200 years .

As a result of such shifts, entire ecosystems can be upended . WMO notes that spring arrival times of over a hundred European migratory bird species over five decades “show increasing levels of mismatch to other spring events”, such as the moment when trees produce leaves and insects take flight, which are important for bird survival.

The report says these mismatches “are likely to have contributed to population decline in some migrant species , particularly those wintering in sub-Saharan Africa”, and to the ongoing destruction of biodiversity.

Ending the ‘war on nature’

In his message on Earth Day, UN chief Mr. Guterres warned that “ biodiversity is collapsing as one million species teeter on the brink of extinction ”, and called on the world to end its “relentless and senseless wars on nature”, insisting that “we have the tools, the knowledge, and the solutions” to address climate change.

Last month, Mr. Guterres convened an Advisory Panel of top UN agency officials, private sector and civil society leaders, to help fast track a global initiative aiming to protect all countries through life-saving early warning systems by 2027. Stepped up coordinated action was announced, initially in 30 countries particularly vulnerable to extreme weather, including Small Island Developing States and Least Developed Countries.

Early Warnings for All

WMO Secretary-General Prof. Petteri Taalas said on Friday that some one hundred countries currently do not have adequate weather services in place, and that the UN Early Warnings for All Initiative “ aims to fill the existing capacity gap to ensure that every person on earth is covered by early warning services”.

Mr. Taalas explained that “achieving this ambitious task requires improvement of observation networks, investments in early warning, hydrological and climate service capacities.” He also stressed the effectiveness of collaboration among UN agencies in addressing humanitarian impacts of climate events, especially in reducing mortality and economic losses. 

  • extreme weather
  • climate action
  • International edition
  • Australia edition
  • Europe edition

1.5C above pre-industrial levels is the threshold beyond which our damage to the climate will rapidly become irreversible.

Scientists deliver ‘final warning’ on climate crisis: act now or it’s too late

IPCC report says only swift and drastic action can avert irrevocable damage to world

  • Analysis: Humanity at the crossroads
  • Timeline: The IPCC’s reports

Scientists have delivered a “final warning” on the climate crisis, as rising greenhouse gas emissions push the world to the brink of irrevocable damage that only swift and drastic action can avert.

The Intergovernmental Panel on Climate Change (IPCC), made up of the world’s leading climate scientists, set out the final part of its mammoth sixth assessment report on Monday.

The comprehensive review of human knowledge of the climate crisis took hundreds of scientists eight years to compile and runs to thousands of pages, but boiled down to one message: act now, or it will be too late.

The UN secretary general, António Guterres, said: “This report is a clarion call to massively fast-track climate efforts by every country and every sector and on every timeframe. Our world needs climate action on all fronts: everything, everywhere, all at once.”

In sober language, the IPCC set out the devastation that has already been inflicted on swathes of the world. Extreme weather caused by climate breakdown has led to increased deaths from intensifying heatwaves in all regions, millions of lives and homes destroyed in droughts and floods, millions of people facing hunger, and “increasingly irreversible losses” in vital ecosystems.

Monday’s final instalment, called the synthesis report , is almost certain to be the last such assessment while the world still has a chance of limiting global temperature rises to 1.5C above pre-industrial levels, the threshold beyond which our damage to the climate will rapidly become irreversible .

IPCC climate crisis report delivers ‘final warning' on 1.5C – video

Kaisa Kosonen, a climate expert at Greenpeace International, said: “This report is definitely a final warning on 1.5C. If governments just stay on their current policies, the remaining carbon budget will be used up before the next IPCC report [due in 2030].”

More than 3bn people already live in areas that are “highly vulnerable” to climate breakdown, the IPCC found, and half of the global population now experiences severe water scarcity for at least part of the year. In many areas, the report warned, we are already reaching the limit to which we can adapt to such severe changes, and weather extremes are “increasingly driving displacement” of people in Africa, Asia, North, Central and South America, and the south Pacific.

All of those impacts are set to increase rapidly, as we have failed to reverse the 200-year trend of rising greenhouse gas emissions, despite more than 30 years of warnings from the IPCC, which published its first report in 1990.

The world heats up in response to the accumulation of carbon dioxide and other greenhouse gases in the atmosphere, so every year in which emissions continue to rise eats up the available “carbon budget” and means much more drastic cuts will be needed in future years.

Yet there is still hope of staying within 1.5C, according to the report. Hoesung Lee, the chair of the IPCC, said: “This synthesis report underscores the urgency of taking more ambitious action and shows that, if we act now, we can still secure a livable sustainable future for all.”

Temperatures are now about 1.1C above pre-industrial levels, the IPCC found. If greenhouse gas emissions can be made to peak as soon as possible, and are reduced rapidly in the following years, it may still be possible to avoid the worst ravages that would follow a 1.5C rise.

Richard Allan, a professor of climate science at the University of Reading, said: “Every bit of warming avoided due to the collective actions pulled from our growing, increasingly effective toolkit of options is less worse news for societies and the ecosystems on which we all depend.”

Guterres called on governments to take drastic action to reduce emissions by investing in renewable energy and low-carbon technology. He said rich countries must try to reach net zero greenhouse gas emissions “as close as possible to 2040”, rather than waiting for the 2050 deadline most have signed up to.

after newsletter promotion

He said: “The climate timebomb is ticking. But today’s report is a how-to guide to defuse the climate timebomb. It is a survival guide for humanity. As it shows, the 1.5C limit is achievable.”

John Kerry, the US special presidential envoy for climate, said: “Today’s message from the IPCC is abundantly clear: we are making progress, but not enough. We have the tools to stave off and reduce the risks of the worst impacts of the climate crisis, but we must take advantage of this moment to act now.”

Monday’s “synthesis report” is the final part of the sixth assessment report (AR6) by the IPCC, which was set up in 1988 to investigate the climate and provide scientific underpinning to international policy on the crisis. The first three sections of AR6, published between August 2021 and April 2022, covered the physical science behind the climate crisis, and warned irreversible changes were now almost inevitable ; section two covered the impacts , such as the loss of agriculture, rising sea levels, and the devastation of the natural world; and the third covered the means by which we can cut greenhouse gases , including renewable energy, restoring nature and technologies that capture and store carbon dioxide.

The “synthesis report” contains no new science, but draws together key messages from all of the preceding work to form a guide for governments. The next IPCC report is not due to be published before 2030, making this report effectively the scientific gold standard for advice to governments in this crucial decade.

The final section of AR6 was the “summary for policymakers”, written by IPCC scientists but scrutinised by representatives of governments around the world , who can – and did – push for changes. The Guardian was told that in the final hours of deliberations at the Swiss resort of Interlaken over the weekend, the large Saudi Arabian delegation, of at least 10 representatives, pushed at several points for the weakening of messages on fossil fuels, and the insertion of references to carbon capture and storage, touted by some as a remedy for fossil fuel use but not yet proven to work at scale.

In response to the report, Peter Thorne, the director of the Icarus climate research centre at Maynooth University in Ireland, said next year global temperatures could breach the 1.5C limit, though this did not mean the limit had been breached for the long term. “We will, almost regardless of the emissions scenario given, reach 1.5C in the first half of the next decade,” he said. “The real question is whether our collective choices mean we stabilise around 1.5C or crash through 1.5C, reach 2C and keep going.”

  • Climate crisis
  • Intergovernmental Panel on Climate Change (IPCC)

Most viewed

Subscribe or renew today

Every print subscription comes with full digital access

Science News

‘on the move’ examines how climate change will alter where people live.

Abrahm Lustgarten zooms in on how global warming will affect the United States

A photograph of flames near houses in Chino Hills, Calif., during the 2020 Blue Ridge Fire

As the risk of wildfires grows in the American West (the 2020 Blue Ridge Fire in California, shown), some residents may look for other places to live.

David McNew/Getty Images

Share this:

By Saima Sidik

April 3, 2024 at 10:30 am

latest essay on climate change

On the Move Abrahm Lustgarten Farrar, Straus and Giroux, $30

Ellen Herdell’s nerves were nearing a breaking point. The fortysomething, lifelong Californian had noticed her home was increasingly threatened by wildfires. After relatives lost their house to a blaze and the constant threat traumatized her 9-year-old daughter, Herdell found herself up at 3 a.m. one night in 2020 searching Zillow for homes in Vermont.

She’s not alone. Across the United States, people facing extreme fires, storms, floods and heat are looking for the escape hatch. In On the Move , Abrahm Lustgarten examines who these people are, where they live, where climate change may cause them to move and how this reshuffling will impact the country ( SN: 5/12/20 ).

At about 300 pages, the book is a relatively quick read, but Lustgarten’s reporting is deep. Leaning on interviews with such high-profile sources as former U.S. Secretary of State John Kerry and on published research, Lustgarten explains the scientific and political sides of climate migration. Anecdotes from people across the socioeconomic spectrum reveal the mind-sets of people at the front lines of the climate crisis. And the author’s decades of experience as a climate journalist result in a particularly accessible analysis of the insurance landscape, which has long lent a false sense of economic safety to people living in places vulnerable to climate change.

Where will climate migrants end up? Lustgarten looks to scientists and economists for answers. Ecologist Marten Scheffer, for example, has repurposed tools for predicting where plants will thrive to identify zones that humans will find most habitable in the future.

But the book offers no list of the best places to live, as “safe” climate is only one consideration. Other necessities and comforts will also be factors, and some people won’t have the resources to move to an optimal spot. Like Herdell, Lustgarten is a Californian who has watched his state burn. Will he or Herdell leave? To find out, you’ll have to read the book.

Buy On the Move from Bookshop.org. Science News is a Bookshop.org affiliate and will earn a commission on purchases made from links in this article.

More Stories from Science News on Climate

A picture of Greenland's ice sheet near Baffin Bay.

Climate change is changing how we keep time

A photograph of a flooded street in Conway, South Carolina.

Waterlogged soils can give hurricanes new life after they arrive on land

A painting titled “The Plague of Rome” depicts the angel of death directing fatalities during the Antonine Plague. The angel of death has white wings and red fabric floating around it and yields a sword in one hand. Humans suffer and decay in the alley where the painting takes place.

Cold, dry snaps accompanied three plagues that struck the Roman Empire

Picture of land slumping near Tehran, Iran.

Many but not all of the world’s aquifers are losing water

A numbat, brown and black marsupial with white stripes and a pointy nose, sits on a log.

Numbats are built to hold heat, making climate change extra risky for the marsupials

A photo of the vast and rugged surface of Thwaites Glacier, from above.

Speed bumps under Thwaites Glacier could help slow its flow to the sea

Flakes of marine snow fall in the ocean surrounding a dumbo octopus.

Invisible comet tails of mucus slow sinking flakes of ‘marine snow’

A satellite image of the Antarctic peninsula showing fractured sea ice in the ocean next to white land.

3 Antarctic glaciers show rapidly accelerated ice loss from ocean warming

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

NASA Logo

There is unequivocal evidence that Earth is warming at an unprecedented rate. Human activity is the principal cause.

latest essay on climate change

  • While Earth’s climate has changed throughout its history , the current warming is happening at a rate not seen in the past 10,000 years.
  • According to the Intergovernmental Panel on Climate Change ( IPCC ), "Since systematic scientific assessments began in the 1970s, the influence of human activity on the warming of the climate system has evolved from theory to established fact." 1
  • Scientific information taken from natural sources (such as ice cores, rocks, and tree rings) and from modern equipment (like satellites and instruments) all show the signs of a changing climate.
  • From global temperature rise to melting ice sheets, the evidence of a warming planet abounds.

The rate of change since the mid-20th century is unprecedented over millennia.

Earth's climate has changed throughout history. Just in the last 800,000 years, there have been eight cycles of ice ages and warmer periods, with the end of the last ice age about 11,700 years ago marking the beginning of the modern climate era — and of human civilization. Most of these climate changes are attributed to very small variations in Earth’s orbit that change the amount of solar energy our planet receives.

CO2_graph

The current warming trend is different because it is clearly the result of human activities since the mid-1800s, and is proceeding at a rate not seen over many recent millennia. 1 It is undeniable that human activities have produced the atmospheric gases that have trapped more of the Sun’s energy in the Earth system. This extra energy has warmed the atmosphere, ocean, and land, and widespread and rapid changes in the atmosphere, ocean, cryosphere, and biosphere have occurred.

Earth-orbiting satellites and new technologies have helped scientists see the big picture, collecting many different types of information about our planet and its climate all over the world. These data, collected over many years, reveal the signs and patterns of a changing climate.

Scientists demonstrated the heat-trapping nature of carbon dioxide and other gases in the mid-19th century. 2 Many of the science instruments NASA uses to study our climate focus on how these gases affect the movement of infrared radiation through the atmosphere. From the measured impacts of increases in these gases, there is no question that increased greenhouse gas levels warm Earth in response.

Scientific evidence for warming of the climate system is unequivocal.

latest essay on climate change

Intergovernmental Panel on Climate Change

Ice cores drawn from Greenland, Antarctica, and tropical mountain glaciers show that Earth’s climate responds to changes in greenhouse gas levels. Ancient evidence can also be found in tree rings, ocean sediments, coral reefs, and layers of sedimentary rocks. This ancient, or paleoclimate, evidence reveals that current warming is occurring roughly 10 times faster than the average rate of warming after an ice age. Carbon dioxide from human activities is increasing about 250 times faster than it did from natural sources after the last Ice Age. 3

The Evidence for Rapid Climate Change Is Compelling:

Sunlight over a desert-like landscape.

Global Temperature Is Rising

The planet's average surface temperature has risen about 2 degrees Fahrenheit (1 degrees Celsius) since the late 19th century, a change driven largely by increased carbon dioxide emissions into the atmosphere and other human activities. 4 Most of the warming occurred in the past 40 years, with the seven most recent years being the warmest. The years 2016 and 2020 are tied for the warmest year on record. 5 Image credit: Ashwin Kumar, Creative Commons Attribution-Share Alike 2.0 Generic.

Colonies of “blade fire coral” that have lost their symbiotic algae, or “bleached,” on a reef off of Islamorada, Florida.

The Ocean Is Getting Warmer

The ocean has absorbed much of this increased heat, with the top 100 meters (about 328 feet) of ocean showing warming of 0.67 degrees Fahrenheit (0.33 degrees Celsius) since 1969. 6 Earth stores 90% of the extra energy in the ocean. Image credit: Kelsey Roberts/USGS

Aerial view of ice sheets.

The Ice Sheets Are Shrinking

The Greenland and Antarctic ice sheets have decreased in mass. Data from NASA's Gravity Recovery and Climate Experiment show Greenland lost an average of 279 billion tons of ice per year between 1993 and 2019, while Antarctica lost about 148 billion tons of ice per year. 7 Image: The Antarctic Peninsula, Credit: NASA

Glacier on a mountain.

Glaciers Are Retreating

Glaciers are retreating almost everywhere around the world — including in the Alps, Himalayas, Andes, Rockies, Alaska, and Africa. 8 Image: Miles Glacier, Alaska Image credit: NASA

Image of snow from plane

Snow Cover Is Decreasing

Satellite observations reveal that the amount of spring snow cover in the Northern Hemisphere has decreased over the past five decades and the snow is melting earlier. 9 Image credit: NASA/JPL-Caltech

Norfolk flooding

Sea Level Is Rising

Global sea level rose about 8 inches (20 centimeters) in the last century. The rate in the last two decades, however, is nearly double that of the last century and accelerating slightly every year. 10 Image credit: U.S. Army Corps of Engineers Norfolk District

Arctic sea ice.

Arctic Sea Ice Is Declining

Both the extent and thickness of Arctic sea ice has declined rapidly over the last several decades. 11 Credit: NASA's Scientific Visualization Studio

Flooding in a European city.

Extreme Events Are Increasing in Frequency

The number of record high temperature events in the United States has been increasing, while the number of record low temperature events has been decreasing, since 1950. The U.S. has also witnessed increasing numbers of intense rainfall events. 12 Image credit: Régine Fabri,  CC BY-SA 4.0 , via Wikimedia Commons

Unhealthy coral.

Ocean Acidification Is Increasing

Since the beginning of the Industrial Revolution, the acidity of surface ocean waters has increased by about 30%. 13 , 14 This increase is due to humans emitting more carbon dioxide into the atmosphere and hence more being absorbed into the ocean. The ocean has absorbed between 20% and 30% of total anthropogenic carbon dioxide emissions in recent decades (7.2 to 10.8 billion metric tons per year). 1 5 , 16 Image credit: NOAA

1. IPCC Sixth Assessment Report, WGI, Technical Summary . B.D. Santer et.al., “A search for human influences on the thermal structure of the atmosphere.” Nature 382 (04 July 1996): 39-46. https://doi.org/10.1038/382039a0. Gabriele C. Hegerl et al., “Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method.” Journal of Climate 9 (October 1996): 2281-2306. https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2. V. Ramaswamy, et al., “Anthropogenic and Natural Influences in the Evolution of Lower Stratospheric Cooling.” Science 311 (24 February 2006): 1138-1141. https://doi.org/10.1126/science.1122587. B.D. Santer et al., “Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes.” Science 301 (25 July 2003): 479-483. https://doi.org/10.1126/science.1084123. T. Westerhold et al., "An astronomically dated record of Earth’s climate and its predictability over the last 66 million years." Science 369 (11 Sept. 2020): 1383-1387. https://doi.org/10.1126/science.1094123

2. In 1824, Joseph Fourier calculated that an Earth-sized planet, at our distance from the Sun, ought to be much colder. He suggested something in the atmosphere must be acting like an insulating blanket. In 1856, Eunice Foote discovered that blanket, showing that carbon dioxide and water vapor in Earth's atmosphere trap escaping infrared (heat) radiation. In the 1860s, physicist John Tyndall recognized Earth's natural greenhouse effect and suggested that slight changes in the atmospheric composition could bring about climatic variations. In 1896, a seminal paper by Swedish scientist Svante Arrhenius first predicted that changes in atmospheric carbon dioxide levels could substantially alter the surface temperature through the greenhouse effect. In 1938, Guy Callendar connected carbon dioxide increases in Earth’s atmosphere to global warming. In 1941, Milutin Milankovic linked ice ages to Earth’s orbital characteristics. Gilbert Plass formulated the Carbon Dioxide Theory of Climate Change in 1956.

3. IPCC Sixth Assessment Report, WG1, Chapter 2 Vostok ice core data; NOAA Mauna Loa CO2 record O. Gaffney, W. Steffen, "The Anthropocene Equation." The Anthropocene Review 4, issue 1 (April 2017): 53-61. https://doi.org/abs/10.1177/2053019616688022.

4. https://www.ncei.noaa.gov/monitoring https://crudata.uea.ac.uk/cru/data/temperature/ http://data.giss.nasa.gov/gistemp

5. https://www.giss.nasa.gov/research/news/20170118/

6. S. Levitus, J. Antonov, T. Boyer, O Baranova, H. Garcia, R. Locarnini, A. Mishonov, J. Reagan, D. Seidov, E. Yarosh, M. Zweng, " NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586), Version 4.4. (2017) NOAA National Centers for Environmental Information. https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/index3.html K. von Schuckmann, L. Cheng, L,. D. Palmer, J. Hansen, C. Tassone, V. Aich, S. Adusumilli, H. Beltrami, H., T. Boyer, F. Cuesta-Valero, D. Desbruyeres, C. Domingues, A. Garcia-Garcia, P. Gentine, J. Gilson, M. Gorfer, L. Haimberger, M. Ishii, M., G. Johnson, R. Killick, B. King, G. Kirchengast, N. Kolodziejczyk, J. Lyman, B. Marzeion, M. Mayer, M. Monier, D. Monselesan, S. Purkey, D. Roemmich, A. Schweiger, S. Seneviratne, A. Shepherd, D. Slater, A. Steiner, F. Straneo, M.L. Timmermans, S. Wijffels. "Heat stored in the Earth system: where does the energy go?" Earth System Science Data 12, Issue 3 (07 September 2020): 2013-2041. https://doi.org/10.5194/essd-12-2013-2020.

7. I. Velicogna, Yara Mohajerani, A. Geruo, F. Landerer, J. Mouginot, B. Noel, E. Rignot, T. Sutterly, M. van den Broeke, M. Wessem, D. Wiese, "Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions." Geophysical Research Letters 47, Issue 8 (28 April 2020): e2020GL087291. https://doi.org/10.1029/2020GL087291.

8. National Snow and Ice Data Center World Glacier Monitoring Service

9. National Snow and Ice Data Center D.A. Robinson, D. K. Hall, and T. L. Mote, "MEaSUREs Northern Hemisphere Terrestrial Snow Cover Extent Daily 25km EASE-Grid 2.0, Version 1 (2017). Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0530.001 . http://nsidc.org/cryosphere/sotc/snow_extent.html Rutgers University Global Snow Lab. Data History

10. R.S. Nerem, B.D. Beckley, J. T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum, "Climate-change–driven accelerated sea-level rise detected in the altimeter era." PNAS 15, no. 9 (12 Feb. 2018): 2022-2025. https://doi.org/10.1073/pnas.1717312115.

11. https://nsidc.org/cryosphere/sotc/sea_ice.html Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) http://psc.apl.washington.edu/research/projects/arctic-sea-ice-volume-anomaly/ http://psc.apl.uw.edu/research/projects/projections-of-an-ice-diminished-arctic-ocean/

12. USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, https://doi.org/10.7930/j0j964j6 .

13. http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F

14. http://www.pmel.noaa.gov/co2/story/Ocean+Acidification

15. C.L. Sabine, et al., “The Oceanic Sink for Anthropogenic CO2.” Science 305 (16 July 2004): 367-371. https://doi.org/10.1126/science.1097403.

16. Special Report on the Ocean and Cryosphere in a Changing Climate , Technical Summary, Chapter TS.5, Changing Ocean, Marine Ecosystems, and Dependent Communities, Section 5.2.2.3. https://www.ipcc.ch/srocc/chapter/technical-summary/

Header image shows clouds imitating mountains as the sun sets after midnight as seen from Denali's backcountry Unit 13 on June 14, 2019. Credit: NPS/Emily Mesner Image credit in list of evidence: Ashwin Kumar, Creative Commons Attribution-Share Alike 2.0 Generic.

Discover More Topics From NASA

Explore Earth Science

latest essay on climate change

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

latest essay on climate change

  • Make a Gift
  • Natural and Applied Sciences
  • About Our Division
  • The Art of Stem Blog
  • 2021 Natural and Applied Sciences Updates

Our Future Is Now - A Climate Change Essay by Francesca Minicozzi, '21

Francesca Minicozzi (class of 2021) is a Writing/Biology major who plans to study medicine after graduation. She wrote this essay on climate change for WR 355/Travel Writing, which she took while studying abroad in Newcastle in spring 2020. Although the coronavirus pandemic curtailed Francesca’s time abroad, her months in Newcastle prompted her to learn more about climate change. Terre Ryan Associate Professor, Writing Department

Our Future Is Now

By Francesca Minicozzi, '21 Writing and Biology Major

 “If you don’t mind me asking, how is the United States preparing for climate change?” my flat mate, Zac, asked me back in March, when we were both still in Newcastle. He and I were accustomed to asking each other about the differences between our home countries; he came from Cambridge, while I originated in Long Island, New York. This was one of our numerous conversations about issues that impact our generation, which we usually discussed while cooking dinner in our communal kitchen. In the moment of our conversation, I did not have as strong an answer for him as I would have liked. Instead, I informed him of the few changes I had witnessed within my home state of New York.

Francesca Minicozzi, '21

Zac’s response was consistent with his normal, diplomatic self. “I have been following the BBC news in terms of the climate crisis for the past few years. The U.K. has been working hard to transition to renewable energy sources. Similar to the United States, here in the United Kingdom we have converted over to solar panels too. My home does not have solar panels, but a lot of our neighbors have switched to solar energy in the past few years.”

“Our two countries are similar, yet so different,” I thought. Our conversation continued as we prepared our meals, with topics ranging from climate change to the upcoming presidential election to Britain’s exit from the European Union. However, I could not shake the fact that I knew so little about a topic so crucial to my generation.

After I abruptly returned home from the United Kingdom because of the global pandemic, my conversation with my flat mate lingered in my mind. Before the coronavirus surpassed climate change headlines, I had seen the number of internet postings regarding protests to protect the planet dramatically increase. Yet the idea of our planet becoming barren and unlivable in a not-so-distant future had previously upset me to the point where a part of me refused to deal with it. After I returned from studying abroad, I decided to educate myself on the climate crisis.

My quest for climate change knowledge required a thorough understanding of the difference between “climate change” and “global warming.” Climate change is defined as “a pattern of change affecting global or regional climate,” based on “average temperature and rainfall measurements” as well as the frequency of extreme weather events. 1   These varied temperature and weather events link back to both natural incidents and human activity. 2   Likewise, the term global warming was coined “to describe climate change caused by humans.” 3   Not only that, but global warming is most recently attributed to an increase in “global average temperature,” mainly due to greenhouse gas emissions produced by humans. 4

I next questioned why the term “climate change” seemed to take over the term “global warming” in the United States. According to Frank Luntz, a leading Republican consultant, the term “global warming” functions as a rather intimidating phrase. During George W. Bush’s first presidential term, Luntz argued in favor of using the less daunting phrase “climate change” in an attempt to overcome the environmental battle amongst Democrats and Republicans. 5   Since President Bush’s term, Luntz remains just one political consultant out of many politicians who has recognized the need to address climate change. In an article from 2019, Luntz proclaimed that political parties aside, the climate crisis affects everyone. Luntz argued that politicians should steer clear of trying to communicate “the complicated science of climate change,” and instead engage voters by explaining how climate change personally impacts citizens with natural disasters such as hurricanes, tornadoes, and forest fires. 6   He even suggested that a shift away from words like “sustainability” would gear Americans towards what they really want: a “cleaner, safer, healthier” environment. 7

The idea of a cleaner and heathier environment remains easier said than done. The Paris Climate Agreement, introduced in 2015, began the United Nations’ “effort to combat global climate change.” 8   This agreement marked a global initiative to “limit global temperature increase in this century to 2 degrees Celsius above preindustrial levels,” while simultaneously “pursuing means to limit the increase to 1.5 degrees.” 9    Every country on earth has joined together in this agreement for the common purpose of saving our planet. 10   So, what could go wrong here? As much as this sounds like a compelling step in the right direction for climate change, President Donald Trump thought otherwise. In June 2017, President Trump announced the withdrawal of the United States from the Paris Agreement with his proclamation of climate change as a “’hoax’ perpetrated by China.” 11   President Trump continued to question the scientific facts behind climate change, remaining an advocate for the expansion of domestic fossil fuel production. 12   He reversed environmental policies implemented by former President Barack Obama to reduce fossil fuel use. 13

Trump’s actions against the Paris Agreement, however, fail to represent the beliefs of Americans as a whole. The majority of American citizens feel passionate about the fight against climate change. To demonstrate their support, some have gone as far as creating initiatives including America’s Pledge and We Are Still In. 14   Although the United States officially exited the Paris Agreement on November 4, 2020, this withdrawal may not survive permanently. 15   According to experts, our new president “could rejoin in as short as a month’s time.” 16   This offers a glimmer of hope.

The Paris Agreement declares that the United States will reduce greenhouse gas emission levels by 26 to 28 percent by the year 2025. 17   As a leader in greenhouse gas emissions, the United States needs to accept the climate crisis for the serious challenge that it presents and work together with other nations. The concept of working coherently with all nations remains rather tricky; however, I remain optimistic. I think we can learn from how other countries have adapted to the increased heating of our planet. During my recent study abroad experience in the United Kingdom, I was struck by Great Britain’s commitment to combating climate change.

Since the United Kingdom joined the Paris Agreement, the country targets a “net-zero” greenhouse gas emission for 2050. 18   This substantial alteration would mark an 80% reduction of greenhouse gases from 1990, if “clear, stable, and well-designed policies are implemented without interruption.” 19   In order to stay on top of reducing emissions, the United Kingdom tracks electricity and car emissions, “size of onshore and offshore wind farms,” amount of homes and “walls insulated, and boilers upgraded,” as well as the development of government policies, including grants for electric vehicles. 20   A strong grip on this data allows the United Kingdom to target necessary modifications that keep the country on track for 2050. In my brief semester in Newcastle, I took note of these significant changes. The city of Newcastle is small enough that many students and faculty are able to walk or bike to campus and nearby essential shops. However, when driving is unavoidable, the majority of the vehicles used are electric, and many British citizens place a strong emphasis on carpooling to further reduce emissions. The United Kingdom’s determination to severely reduce greenhouse emissions is ambitious and particularly admirable, especially as the United States struggles to shy away from its dependence on fossil fuels.

So how can we, as Americans, stand together to combat global climate change? Here are five adjustments Americans can make to their homes and daily routines that can dramatically make a difference:

  • Stay cautious of food waste. Studies demonstrate that “Americans throw away up to 40 percent of the food they buy.” 21   By being more mindful of the foods we purchase, opting for leftovers, composting wastes, and donating surplus food to those in need, we can make an individual difference that impacts the greater good. 22   
  • Insulate your home. Insulation functions as a “cost-effective and accessible” method to combat climate change. 23   Homes with modern insulation reduce energy required to heat them, leading to a reduction of emissions and an overall savings; in comparison, older homes can “lose up to 35 percent of heat through their walls.” 24   
  • Switch to LED Lighting. LED stands for “light-emitting diodes,” which use “90 percent less energy than incandescent bulbs and half as much as compact fluorescents.” 25   LED lights create light without producing heat, and therefore do not waste energy. Additionally, these lights have a longer duration than other bulbs, which means they offer a continuing savings. 26  
  • Choose transportation wisely. Choose to walk or bike whenever the option presents itself. If walking or biking is not an option, use an electric or hybrid vehicle which emits less harmful gases. Furthermore, reduce the number of car trips taken, and carpool with others when applicable. 
  • Finally, make your voice heard. The future of our planet remains in our hands, so we might as well use our voices to our advantage. Social media serves as a great platform for this. Moreover, using social media to share helpful hints to combat climate change within your community or to promote an upcoming protest proves beneficial in the long run. If we collectively put our voices to good use, together we can advocate for change.

As many of us are stuck at home due to the COVID-19 pandemic, these suggestions are slightly easier to put into place. With numerous “stay-at-home” orders in effect, Americans have the opportunity to make significant achievements for climate change. Personally, I have taken more precautions towards the amount of food consumed within my household during this pandemic. I have been more aware of food waste, opting for leftovers when too much food remains. Additionally, I have realized how powerful my voice is as a young college student. Now is the opportunity for Americans to share how they feel about climate change. During this unprecedented time, our voice is needed now more than ever in order to make a difference.

However, on a much larger scale, the coronavirus outbreak has shed light on reducing global energy consumption. Reductions in travel, both on the roads and in the air, have triggered a drop in emission rates. In fact, the International Energy Agency predicts a 6 percent decrease in energy consumption around the globe for this year alone. 27   This drop is “equivalent to losing the entire energy demand of India.” 28   Complete lockdowns have lowered the global demand for electricity and slashed CO2 emissions. However, in New York City, the shutdown has only decreased carbon dioxide emissions by 10 percent. 29   This proves that a shift in personal behavior is simply not enough to “fix the carbon emission problem.” 30   Climate policies aimed to reduce fossil fuel production and promote clean technology will be crucial steppingstones to ameliorating climate change effects. Our current reduction of greenhouse gas emissions serves as “the sort of reduction we need every year until net-zero emissions are reached around 2050.” 31   From the start of the coronavirus pandemic, politicians came together for the common good of protecting humanity; this demonstrates that when necessary, global leaders are capable of putting humankind above the economy. 32

After researching statistics comparing the coronavirus to climate change, I thought back to the moment the virus reached pandemic status. I knew that a greater reason underlay all of this global turmoil. Our globe is in dire need of help, and the coronavirus reminds the world of what it means to work together. This pandemic marks a turning point in global efforts to slow down climate change. The methods we enact towards not only stopping the spread of the virus, but slowing down climate change, will ultimately depict how humanity will arise once this pandemic is suppressed. The future of our home planet lies in how we treat it right now. 

  • “Climate Change: What Do All the Terms Mean?,” BBC News (BBC, May 1, 2019), https://www.bbc.com/news/science-environment-48057733 )
  • Ibid. 
  • Kate Yoder, “Frank Luntz, the GOP's Message Master, Calls for Climate Action,” Grist (Grist, July 26, 2019), https://grist.org/article/the-gops-most-famous-messaging-strategist-calls-for-climate-action
  • Melissa Denchak, “Paris Climate Agreement: Everything You Need to Know,” NRDC, April 29, 2020, https://www.nrdc.org/stories/paris-climate-agreement-everything-you-need-know)
  • “Donald J. Trump's Foreign Policy Positions,” Council on Foreign Relations (Council on Foreign Relations), accessed May 7, 2020, https://www.cfr.org/election2020/candidate-tracker/donald-j.-trump?gclid=CjwKCAjw4871BRAjEiwAbxXi21cneTRft_doA5if60euC6QCL7sr-Jwwv76IkgWaUTuyJNx9EzZzRBoCdjsQAvD_BwE#climate and energy )
  • David Doniger, “Paris Climate Agreement Explained: Does Congress Need to Sign Off?,” NRDC, December 15, 2016, https://www.nrdc.org/experts/david-doniger/paris-climate-agreement-explained-does-congress-need-sign )
  • “How the UK Is Progressing,” Committee on Climate Change, March 9, 2020, https://www.theccc.org.uk/what-is-climate-change/reducing-carbon-emissions/how-the-uk-is-progressing/)
  • Ibid.  
  • “Top 10 Ways You Can Fight Climate Change,” Green America, accessed May 7, 2020, https://www.greenamerica.org/your-green-life/10-ways-you-can-fight-climate-change )
  • Matt McGrath, “Climate Change and Coronavirus: Five Charts about the Biggest Carbon Crash,” BBC News (BBC, May 5, 2020), https://www.bbc.com/news/amp/science-environment-52485712 )
  • Natural & Applied Sciences
  • Social Sciences

Blog Archive

latest essay on climate change

Is the world focused enough on climate change?

There are fears that wars in Gaza and Ukraine may deflect attention from the climate crisis.

A state of emergency is declared in Zimbabwe, with extreme drought putting millions of people in danger.

As wars rage in Gaza and Ukraine, the battle against climate change continues – but makes fewer headlines.

Is the world paying enough attention to the threat the entire planet faces?

Mohammed Jamjoom

John Sweeney – Professor emeritus at Maynooth University

Maurice Onyango – Regional head of disaster risk management at Plan International

Carlo Buontempo – Director of the Copernicus Climate Change Service.

latest essay on climate change

25,000+ students realised their study abroad dream with us. Take the first step today

Meet top uk universities from the comfort of your home, here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

latest essay on climate change

Verification Code

An OTP has been sent to your registered mobile no. Please verify

latest essay on climate change

Thanks for your comment !

Our team will review it before it's shown to our readers.

Leverage Edu

  • School Education /

Essay on Climate Change: Check Samples in 100, 250 Words

' src=

  • Updated on  
  • Sep 21, 2023

latest essay on climate change

Writing an essay on climate change is crucial to raise awareness and advocate for action. The world is facing environmental challenges, so in a situation like this such essay topics can serve as s platform to discuss the causes, effects, and solutions to this pressing issue. They offer an opportunity to engage readers in understanding the urgency of mitigating climate change for the sake of our planet’s future.

Must Read: Essay On Environment  

This Blog Includes:

What is climate change, what are the causes of climate change, what are the effects of climate change, how to fight climate change, essay on climate change in 100 words, climate change sample essay 250 words.

Climate change is the significant variation of average weather conditions becoming, for example, warmer, wetter, or drier—over several decades or longer. It may be natural or anthropogenic. However, in recent times, it’s been in the top headlines due to escalations caused by human interference.

Obama at the First Session of COP21 rightly quoted “We are the first generation to feel the impact of climate change, and the last generation that can do something about it.”.Identifying the causes of climate change is the first step to take in our fight against climate change. Below stated are some of the causes of climate change:

  • Greenhouse Gas Emissions: Mainly from burning fossil fuels (coal, oil, and natural gas) for energy and transportation.
  • Deforestation: The cutting down of trees reduces the planet’s capacity to absorb carbon dioxide.
  • Industrial Processes: Certain manufacturing activities release potent greenhouse gases.
  • Agriculture: Livestock and rice cultivation emit methane, a potent greenhouse gas.

Climate change poses a huge risk to almost all life forms on Earth. The effects of climate change are listed below:

  • Global Warming: Increased temperatures due to trapped heat from greenhouse gases.
  • Melting Ice and Rising Sea Levels: Ice caps and glaciers melt, causing oceans to rise.
  • Extreme Weather Events: More frequent and severe hurricanes, droughts, and wildfires.
  • Ocean Acidification: Oceans absorb excess CO2, leading to more acidic waters harming marine life.
  • Disrupted Ecosystems: Shifting climate patterns disrupt habitats and threaten biodiversity.
  • Food and Water Scarcity: Altered weather affects crop yields and strains water resources.
  • Human Health Risks: Heat-related illnesses and the spread of diseases.
  • Economic Impact: Damage to infrastructure and increased disaster-related costs.
  • Migration and Conflict: Climate-induced displacement and resource competition.

‘Climate change is a terrible problem, and it absolutely needs to be solved. It deserves to be a huge priority,’ says Bill Gates. The below points highlight key actions to combat climate change effectively.

  • Energy Efficiency: Improve energy efficiency in all sectors.
  • Protect Forests: Stop deforestation and promote reforestation.
  • Sustainable Agriculture: Adopt eco-friendly farming practices.
  • Advocacy: Raise awareness and advocate for climate-friendly policies.
  • Innovation: Invest in green technologies and research.
  • Government Policies: Enforce climate-friendly regulations and targets.
  • Corporate Responsibility: Encourage sustainable business practices.
  • Individual Action: Reduce personal carbon footprint and inspire others.

Climate change refers to long-term alterations in Earth’s climate patterns, primarily driven by human activities, such as burning fossil fuels and deforestation, which release greenhouse gases into the atmosphere. These gases trap heat, leading to global warming. The consequences of climate change are widespread and devastating. Rising temperatures cause polar ice caps to melt, contributing to sea level rise and threatening coastal communities. Extreme weather events, like hurricanes and wildfires, become more frequent and severe, endangering lives and livelihoods. Additionally, shifts in weather patterns can disrupt agriculture, leading to food shortages. To combat climate change, global cooperation, renewable energy adoption, and sustainable practices are crucial for a more sustainable future.

Must Read: Essay On Global Warming

Climate change represents a pressing global challenge that demands immediate attention and concerted efforts. Human activities, primarily the burning of fossil fuels and deforestation, have significantly increased the concentration of greenhouse gases in the atmosphere. This results in a greenhouse effect, trapping heat and leading to a rise in global temperatures, commonly referred to as global warming.

The consequences of climate change are far-reaching and profound. Rising sea levels threaten coastal communities, displacing millions and endangering vital infrastructure. Extreme weather events, such as hurricanes, droughts, and wildfires, have become more frequent and severe, causing devastating economic and human losses. Disrupted ecosystems affect biodiversity and the availability of vital resources, from clean water to agricultural yields.

Moreover, climate change has serious implications for food and water security. Changing weather patterns disrupt traditional farming practices and strain freshwater resources, potentially leading to conflicts over access to essential commodities.

Addressing climate change necessitates a multifaceted approach. First, countries must reduce their greenhouse gas emissions through the transition to renewable energy sources, increased energy efficiency, and reforestation efforts. International cooperation is crucial to set emission reduction targets and hold nations accountable for meeting them.

In conclusion, climate change is a global crisis with profound and immediate consequences. Urgent action is needed to mitigate its impacts and secure a sustainable future for our planet. By reducing emissions and implementing adaptation strategies, we can protect vulnerable communities, preserve ecosystems, and ensure a livable planet for future generations. The time to act is now.

Climate change refers to long-term shifts in Earth’s climate patterns, primarily driven by human activities like burning fossil fuels and deforestation.

Five key causes of climate change include excessive greenhouse gas emissions from human activities, notably burning fossil fuels and deforestation. 

We hope this blog gave you an idea about how to write and present an essay on climate change that puts forth your opinions. The skill of writing an essay comes in handy when appearing for standardized language tests. Thinking of taking one soon? Leverage Edu provides the best online test prep for the same via Leverage Live . Register today to know more!

' src=

Amisha Khushara

With a heart full of passion for writing, I pour my emotions into every piece I create. I strive to connect with readers on a personal level, infusing my work with authenticity and relatability. Writing isn't just a skill; it's my heartfelt expression to touch hearts and minds.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

latest essay on climate change

Connect With Us

latest essay on climate change

25,000+ students realised their study abroad dream with us. Take the first step today.

latest essay on climate change

Resend OTP in

latest essay on climate change

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

January 2024

September 2024

What is your budget to study abroad?

latest essay on climate change

How would you describe this article ?

Please rate this article

We would like to hear more.

Have something on your mind?

latest essay on climate change

Make your study abroad dream a reality in January 2022 with

latest essay on climate change

India's Biggest Virtual University Fair

latest essay on climate change

Essex Direct Admission Day

Why attend .

latest essay on climate change

Don't Miss Out

Scientists warn Australians to prepare for megadroughts lasting more than 20 years

Close up of cracked earth

New climate modelling suggests Australians should be preparing for the possibility of megadroughts lasting more than 20 years.

Research from the Australian National University, published in a special edition of the journal Hydrology and Earth System Sciences, has indicated future droughts in Australia could be far worse than anything experienced in recent times — even without factoring in human impacts.

Dr Georgy smalls at the camera sitting at a table

Climate scientist Georgy Falster said while megadroughts occurred naturally, climate change would make them more severe.

"We have this situation where on the one hand, there's the possibility for naturally occurring megadroughts that can last multiple decades and might come along every maybe 150 to 100 years," Dr Falster said.

"But then on the other hand, we found climate change is tending to make droughts longer, particularly in south, western and eastern Australia, and climate change is also making droughts more severe because of the hotter temperature."

She pointed to the recent Tinderbox Drought that occurred in south-east Australia, linked to the Black Summer bushfires, which lasted "only three years".

"So we can imagine droughts that last from anywhere, sort of four times as long as that up to 20 or even 30 years," Dr Falster said.

"They don't happen often, but they can happen and it's very difficult to predict when that might be.

"We should be prepared for one to happen even in the next 10 or so years."

Preparing for long droughts

The research team used 11 different models to look at how Australia's climate has changed over more than 1,000 years, but there was also evidence of past rainfall changes in tree rings to help paint a picture of when megadroughts had occurred.

Dr Georgy Falster smiles with a graph projected behind her

Dr Falster hoped the research would help farmers and the wider community be prepared for longer and more severe droughts.

"We can reduce the impact of megadroughts by being prepared with things like water management strategies, community support networks and financial support for farmers, environmental management plans, that sort of thing," she said.

"But then to reduce the actual risk of megadroughts and their severity, of course, the only thing that we can do is to rapidly reduce greenhouse gas emissions."

Concern for farmers

Far west NSW grazier Richard Wilson has lived through many droughts on Yalda Downs Station, located 85 kilometres north of White Cliffs, but particularly remembers one from 2016 that lasted four years.

Richard leans on a fence with the sun in the background

"Everyone found it tough. There's no other way to say it," Mr Wilson said.

"It's on your mind all the time. It's often very hard to talk about it."

He said planning for the inevitable was important.

"There was no warning signs it was going to come. You just have to be prepared for it," Mr Wilson said.

"Set some plans up and you need to be also quite prepared to change those plans as things develop, but think about it well before it happens so that you've got some thought process in place that you're going to be dealing with the lack of feed and water."

Man sitting on tractor

ABC Rural news daily

  • X (formerly Twitter)

Related Stories

Parched parts of tasmania got some welcome rain — but one place missed out.

Beth Vellekoop stands on a beach.

Perth has been enjoying a glorious stretch of weather, but experts warn the cloudless skies could come at a cost

A hazy sky envelops Perth's metro area from a high vantage point

Is Tasmania in drought? This is the difference a bad year makes

Composite image of a dam showing animals near it and a low water line a year later.

Consumers may face more hot-chip potato shortages as heatwaves become more widespread

Terry Buckley kneels in a potato field holding some freshly harvested potatoes.

  • Climate Change
  • White Cliffs

Watch CBS News

Building healthier habitats to resist the impacts of climate change

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Research articles

latest essay on climate change

Global warming decreases connectivity among coral populations

The authors develop a high-resolution model of coral larval dispersal for the southern Great Barrier Reef. They show that 2 °C of warming decreases larval dispersal distance and connectivity of reefs, hampering post-disturbance recovery and the potential spread of warm-adapted genes.

  • Joana Figueiredo
  • Christopher J. Thomas
  • Emmanuel Hanert

latest essay on climate change

Phenological mismatches between above- and belowground plant responses to climate warming

The authors conduct a meta-analysis to reveal mismatches in above- and belowground plant phenological responses to warming that differ by plant type (herbaceous versus woody). The work highlights a need for further research and consideration of under-represented belowground phenological changes.

  • Huiying Liu
  • Madhav P. Thakur

latest essay on climate change

Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways

There is a balance in mitigation pathway design between economic transition cost and physical climate threats. This study provides a comprehensive framework to assess the near- and long-term risks under various warming scenarios globally and in particular regions.

  • Ajay Gambhir
  • Seth Monteith

latest essay on climate change

Hysteresis of the intertropical convergence zone to CO 2 forcing

In idealized model experiments where CO 2 increases four-fold before returning to its original level, temperature and precipitation show almost linear responses to CO 2 forcing. In contrast, the response of the Intertropical Convergence Zone lags behind CO 2 changes, associated with delayed energy exchanges.

  • Jong-Seong Kug
  • Jongsoo Shin

latest essay on climate change

Contextualizing cross-national patterns in household climate change adaptation

The context and motivation around adaptation are influenced by local culture and institutions. In the United States, China, Indonesia and the Netherlands, some factors (such as perceived costs) have similar influences on household adaptation to flooding, but others (such as flood experience) differ between countries.

  • Brayton Noll
  • Tatiana Filatova
  • Alessandro Taberna

latest essay on climate change

Ocean warming and accelerating Southern Ocean zonal flow

The remoteness and paucity of historic observations of the Southern Ocean limit understanding of the effects of climate change on circulation. Using observations, CMIP6 and eddy-resolving models, this Article shows that acceleration of its zonal flow emerged in recent decades as a result of uneven ocean warming.

  • Jia-Rui Shi
  • Lynne D. Talley

latest essay on climate change

Cost and attainability of meeting stringent climate targets without overshoot

Current emissions scenarios include pathways that overshoot the temperature goals set out in the Paris Agreement and rely on future net negative emissions. Limiting overshoot would require near-term investment but would result in longer-term economic benefit.

  • Keywan Riahi
  • Christoph Bertram
  • Behnam Zakeri

latest essay on climate change

Net zero-emission pathways reduce the physical and economic risks of climate change

Mitigation pathways allowing for temperature overshoot often ignore the related climate and macroeconomic impacts. Net-zero pathways with limited overshoot could reduce low-probability high-consequence risks and economic loss.

  • Laurent Drouet
  • Valentina Bosetti
  • Massimo Tavoni

latest essay on climate change

Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls

Climate mitigation policies often provide health co-benefits. Analysis of individual power plants under future climate–energy policy scenarios shows reducing air pollution-related deaths does not automatically align with emission reduction policies and that policy design needs to consider public health.

  • Guannan Geng
  • Steven J. Davis

latest essay on climate change

Climate action with revenue recycling has benefits for poverty, inequality and well-being

Climate policy analyses often ignore the possibility of progressive redistribution of carbon tax revenues and assume that mitigation cost will burden the poor in the short term. Integrated Assessment Model (IAM) estimation suggests such redistribution could reduce inequality, alleviate poverty and increase well-being globally.

  • Mark Budolfson
  • Francis Dennig
  • Stéphane Zuber

latest essay on climate change

Observed increases in extreme fire weather driven by atmospheric humidity and temperature

Climate change has led to increased fire activity in parts of the globe due to observed increases in fire weather extremes. These trends are driven predominantly by decreasing relative humidity and increasing temperature.

  • Piyush Jain
  • Dante Castellanos-Acuna
  • Mike D. Flannigan

latest essay on climate change

Climate and land-use changes reduce the benefits of terrestrial protected areas

The authors project future rates of temporal and spatial displacement of climate and land-use in protected areas (PAs), and show that more than one-quarter of the world’s PAs are highly threatened, with particular risk to PAs across tropical moist and grassland biomes.

  • Ernest F. Asamoah
  • Linda J. Beaumont
  • Joseph M. Maina

latest essay on climate change

Demand-side solutions to climate change mitigation consistent with high levels of well-being

Evaluation of mitigation actions often focuses on cost and overlooks the direct effects on well-being. This work shows demand-side measures have large mitigation potential and beneficial effects on well-being outcomes.

  • Felix Creutzig
  • Leila Niamir
  • Diana Ürge-Vorsatz

latest essay on climate change

A multi-model analysis of long-term emissions and warming implications of current mitigation efforts

Mitigation pathways tend to focus on an end temperature target and calculate how to keep within these bounds. This work uses seven integrated assessment models to consider current mitigation efforts and project likely temperature trajectories.

  • Ida Sognnaes
  • Glen P. Peters

latest essay on climate change

Risk transfer policies and climate-induced immobility among smallholder farmers

Smallholder farmers will be impacted substantially by climate change and need to adapt. Agent-based modelling shows that interventions, particularly cash transfer paired with risk transfer mechanisms, lead to increased migration and uptake of cash crops, with higher income and lower inequality.

  • Nicolas Choquette-Levy
  • Matthias Wildemeersch
  • Simon A. Levin

latest essay on climate change

Climatic limit for agriculture in Brazil

Soybean and maize yields in the Amazon-Cerrado region of Brazil are dependent on water from rain. Warming and drying will make the climate less suitable for agricultural production; changes have already moved 28% of croplands out of their optimum climate space.

  • Ludmila Rattis
  • Paulo M. Brando
  • Michael T. Coe

latest essay on climate change

Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities

Heat extremes threaten the health of urban residents with particularly strong impacts from day–night sustained heat. Observation and simulation data across eastern China show increasing risks of compound events attributed to anthropogenic emissions and urbanization.

latest essay on climate change

A systematic global stocktake of evidence on human adaptation to climate change

Determining progress in adaptation to climate change is challenging, yet critical as climate change impacts increase. A stocktake of the scientific literature on implemented adaptation now shows that adaptation is mostly fragmented and incremental, with evidence lacking for its impact on reducing risk.

  • Lea Berrang-Ford
  • A. R. Siders
  • Thelma Zulfawu Abu

latest essay on climate change

Threatened salmon rely on a rare life history strategy in a warming landscape

Highlighting the importance of rare phenotypes in population persistence, the authors show that spring-run Chinook salmon late-migrant juveniles were critical for cohort success in drought and ocean heatwave years. Combined further warming and impassable dams threaten these late migrants’ survival.

  • F. Cordoleani
  • C. C. Phillis
  • R. C. Johnson

latest essay on climate change

Impact of high-speed rail on road traffic and greenhouse gas emissions

Intercity high-speed rail (HSR) can have large climate benefits with its high energy efficiency. This study explores the substitution effects of HSR on road traffic in China, which can be translated to an annual reduction of 14.76 million tons of CO 2 -equivalent emissions.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

latest essay on climate change

  • Share full article

latest essay on climate change

The Science of Climate Change Explained: Facts, Evidence and Proof

Definitive answers to the big questions.

Credit... Photo Illustration by Andrea D'Aquino

Supported by

By Julia Rosen

Ms. Rosen is a journalist with a Ph.D. in geology. Her research involved studying ice cores from Greenland and Antarctica to understand past climate changes.

  • Published April 19, 2021 Updated Nov. 6, 2021

The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction. Here, we’ve done our best to present you with not only the most accurate scientific information, but also an explanation of how we know it.

How do we know climate change is really happening?

How much agreement is there among scientists about climate change, do we really only have 150 years of climate data how is that enough to tell us about centuries of change, how do we know climate change is caused by humans, since greenhouse gases occur naturally, how do we know they’re causing earth’s temperature to rise, why should we be worried that the planet has warmed 2°f since the 1800s, is climate change a part of the planet’s natural warming and cooling cycles, how do we know global warming is not because of the sun or volcanoes, how can winters and certain places be getting colder if the planet is warming, wildfires and bad weather have always happened. how do we know there’s a connection to climate change, how bad are the effects of climate change going to be, what will it cost to do something about climate change, versus doing nothing.

Climate change is often cast as a prediction made by complicated computer models. But the scientific basis for climate change is much broader, and models are actually only one part of it (and, for what it’s worth, they’re surprisingly accurate ).

For more than a century , scientists have understood the basic physics behind why greenhouse gases like carbon dioxide cause warming. These gases make up just a small fraction of the atmosphere but exert outsized control on Earth’s climate by trapping some of the planet’s heat before it escapes into space. This greenhouse effect is important: It’s why a planet so far from the sun has liquid water and life!

However, during the Industrial Revolution, people started burning coal and other fossil fuels to power factories, smelters and steam engines, which added more greenhouse gases to the atmosphere. Ever since, human activities have been heating the planet.

We know this is true thanks to an overwhelming body of evidence that begins with temperature measurements taken at weather stations and on ships starting in the mid-1800s. Later, scientists began tracking surface temperatures with satellites and looking for clues about climate change in geologic records. Together, these data all tell the same story: Earth is getting hotter.

Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more than the sea surface and the Arctic has warmed the most — by more than 4 degrees Fahrenheit just since the 1960s. Temperature extremes have also shifted. In the United States, daily record highs now outnumber record lows two-to-one.

latest essay on climate change

Where it was cooler or warmer in 2020 compared with the middle of the 20th century

latest essay on climate change

This warming is unprecedented in recent geologic history. A famous illustration, first published in 1998 and often called the hockey-stick graph, shows how temperatures remained fairly flat for centuries (the shaft of the stick) before turning sharply upward (the blade). It’s based on data from tree rings, ice cores and other natural indicators. And the basic picture , which has withstood decades of scrutiny from climate scientists and contrarians alike, shows that Earth is hotter today than it’s been in at least 1,000 years, and probably much longer.

In fact, surface temperatures actually mask the true scale of climate change, because the ocean has absorbed 90 percent of the heat trapped by greenhouse gases . Measurements collected over the last six decades by oceanographic expeditions and networks of floating instruments show that every layer of the ocean is warming up. According to one study , the ocean has absorbed as much heat between 1997 and 2015 as it did in the previous 130 years.

We also know that climate change is happening because we see the effects everywhere. Ice sheets and glaciers are shrinking while sea levels are rising. Arctic sea ice is disappearing. In the spring, snow melts sooner and plants flower earlier. Animals are moving to higher elevations and latitudes to find cooler conditions. And droughts, floods and wildfires have all gotten more extreme. Models predicted many of these changes, but observations show they are now coming to pass.

Back to top .

There’s no denying that scientists love a good, old-fashioned argument. But when it comes to climate change, there is virtually no debate: Numerous studies have found that more than 90 percent of scientists who study Earth’s climate agree that the planet is warming and that humans are the primary cause. Most major scientific bodies, from NASA to the World Meteorological Organization , endorse this view. That’s an astounding level of consensus given the contrarian, competitive nature of the scientific enterprise, where questions like what killed the dinosaurs remain bitterly contested .

Scientific agreement about climate change started to emerge in the late 1980s, when the influence of human-caused warming began to rise above natural climate variability. By 1991, two-thirds of earth and atmospheric scientists surveyed for an early consensus study said that they accepted the idea of anthropogenic global warming. And by 1995, the Intergovernmental Panel on Climate Change, a famously conservative body that periodically takes stock of the state of scientific knowledge, concluded that “the balance of evidence suggests that there is a discernible human influence on global climate.” Currently, more than 97 percent of publishing climate scientists agree on the existence and cause of climate change (as does nearly 60 percent of the general population of the United States).

So where did we get the idea that there’s still debate about climate change? A lot of it came from coordinated messaging campaigns by companies and politicians that opposed climate action. Many pushed the narrative that scientists still hadn’t made up their minds about climate change, even though that was misleading. Frank Luntz, a Republican consultant, explained the rationale in an infamous 2002 memo to conservative lawmakers: “Should the public come to believe that the scientific issues are settled, their views about global warming will change accordingly,” he wrote. Questioning consensus remains a common talking point today, and the 97 percent figure has become something of a lightning rod .

To bolster the falsehood of lingering scientific doubt, some people have pointed to things like the Global Warming Petition Project, which urged the United States government to reject the Kyoto Protocol of 1997, an early international climate agreement. The petition proclaimed that climate change wasn’t happening, and even if it were, it wouldn’t be bad for humanity. Since 1998, more than 30,000 people with science degrees have signed it. However, nearly 90 percent of them studied something other than Earth, atmospheric or environmental science, and the signatories included just 39 climatologists. Most were engineers, doctors, and others whose training had little to do with the physics of the climate system.

A few well-known researchers remain opposed to the scientific consensus. Some, like Willie Soon, a researcher affiliated with the Harvard-Smithsonian Center for Astrophysics, have ties to the fossil fuel industry . Others do not, but their assertions have not held up under the weight of evidence. At least one prominent skeptic, the physicist Richard Muller, changed his mind after reassessing historical temperature data as part of the Berkeley Earth project. His team’s findings essentially confirmed the results he had set out to investigate, and he came away firmly convinced that human activities were warming the planet. “Call me a converted skeptic,” he wrote in an Op-Ed for the Times in 2012.

Mr. Luntz, the Republican pollster, has also reversed his position on climate change and now advises politicians on how to motivate climate action.

A final note on uncertainty: Denialists often use it as evidence that climate science isn’t settled. However, in science, uncertainty doesn’t imply a lack of knowledge. Rather, it’s a measure of how well something is known. In the case of climate change, scientists have found a range of possible future changes in temperature, precipitation and other important variables — which will depend largely on how quickly we reduce emissions. But uncertainty does not undermine their confidence that climate change is real and that people are causing it.

Earth’s climate is inherently variable. Some years are hot and others are cold, some decades bring more hurricanes than others, some ancient droughts spanned the better part of centuries. Glacial cycles operate over many millenniums. So how can scientists look at data collected over a relatively short period of time and conclude that humans are warming the planet? The answer is that the instrumental temperature data that we have tells us a lot, but it’s not all we have to go on.

Historical records stretch back to the 1880s (and often before), when people began to regularly measure temperatures at weather stations and on ships as they traversed the world’s oceans. These data show a clear warming trend during the 20th century.

latest essay on climate change

Global average temperature compared with the middle of the 20th century

+0.75°C

–0.25°

latest essay on climate change

Some have questioned whether these records could be skewed, for instance, by the fact that a disproportionate number of weather stations are near cities, which tend to be hotter than surrounding areas as a result of the so-called urban heat island effect. However, researchers regularly correct for these potential biases when reconstructing global temperatures. In addition, warming is corroborated by independent data like satellite observations, which cover the whole planet, and other ways of measuring temperature changes.

Much has also been made of the small dips and pauses that punctuate the rising temperature trend of the last 150 years. But these are just the result of natural climate variability or other human activities that temporarily counteract greenhouse warming. For instance, in the mid-1900s, internal climate dynamics and light-blocking pollution from coal-fired power plants halted global warming for a few decades. (Eventually, rising greenhouse gases and pollution-control laws caused the planet to start heating up again.) Likewise, the so-called warming hiatus of the 2000s was partly a result of natural climate variability that allowed more heat to enter the ocean rather than warm the atmosphere. The years since have been the hottest on record .

Still, could the entire 20th century just be one big natural climate wiggle? To address that question, we can look at other kinds of data that give a longer perspective. Researchers have used geologic records like tree rings, ice cores, corals and sediments that preserve information about prehistoric climates to extend the climate record. The resulting picture of global temperature change is basically flat for centuries, then turns sharply upward over the last 150 years. It has been a target of climate denialists for decades. However, study after study has confirmed the results , which show that the planet hasn’t been this hot in at least 1,000 years, and probably longer.

Scientists have studied past climate changes to understand the factors that can cause the planet to warm or cool. The big ones are changes in solar energy, ocean circulation, volcanic activity and the amount of greenhouse gases in the atmosphere. And they have each played a role at times.

For example, 300 years ago, a combination of reduced solar output and increased volcanic activity cooled parts of the planet enough that Londoners regularly ice skated on the Thames . About 12,000 years ago, major changes in Atlantic circulation plunged the Northern Hemisphere into a frigid state. And 56 million years ago, a giant burst of greenhouse gases, from volcanic activity or vast deposits of methane (or both), abruptly warmed the planet by at least 9 degrees Fahrenheit, scrambling the climate, choking the oceans and triggering mass extinctions.

In trying to determine the cause of current climate changes, scientists have looked at all of these factors . The first three have varied a bit over the last few centuries and they have quite likely had modest effects on climate , particularly before 1950. But they cannot account for the planet’s rapidly rising temperature, especially in the second half of the 20th century, when solar output actually declined and volcanic eruptions exerted a cooling effect.

That warming is best explained by rising greenhouse gas concentrations . Greenhouse gases have a powerful effect on climate (see the next question for why). And since the Industrial Revolution, humans have been adding more of them to the atmosphere, primarily by extracting and burning fossil fuels like coal, oil and gas, which releases carbon dioxide.

Bubbles of ancient air trapped in ice show that, before about 1750, the concentration of carbon dioxide in the atmosphere was roughly 280 parts per million. It began to rise slowly and crossed the 300 p.p.m. threshold around 1900. CO2 levels then accelerated as cars and electricity became big parts of modern life, recently topping 420 p.p.m . The concentration of methane, the second most important greenhouse gas, has more than doubled. We’re now emitting carbon much faster than it was released 56 million years ago .

latest essay on climate change

30 billion metric tons

Carbon dioxide emitted worldwide 1850-2017

Rest of world

Other developed

European Union

Developed economies

Other countries

United States

latest essay on climate change

E.U. and U.K.

latest essay on climate change

These rapid increases in greenhouse gases have caused the climate to warm abruptly. In fact, climate models suggest that greenhouse warming can explain virtually all of the temperature change since 1950. According to the most recent report by the Intergovernmental Panel on Climate Change, which assesses published scientific literature, natural drivers and internal climate variability can only explain a small fraction of late-20th century warming.

Another study put it this way: The odds of current warming occurring without anthropogenic greenhouse gas emissions are less than 1 in 100,000 .

But greenhouse gases aren’t the only climate-altering compounds people put into the air. Burning fossil fuels also produces particulate pollution that reflects sunlight and cools the planet. Scientists estimate that this pollution has masked up to half of the greenhouse warming we would have otherwise experienced.

Greenhouse gases like water vapor and carbon dioxide serve an important role in the climate. Without them, Earth would be far too cold to maintain liquid water and humans would not exist!

Here’s how it works: the planet’s temperature is basically a function of the energy the Earth absorbs from the sun (which heats it up) and the energy Earth emits to space as infrared radiation (which cools it down). Because of their molecular structure, greenhouse gases temporarily absorb some of that outgoing infrared radiation and then re-emit it in all directions, sending some of that energy back toward the surface and heating the planet . Scientists have understood this process since the 1850s .

Greenhouse gas concentrations have varied naturally in the past. Over millions of years, atmospheric CO2 levels have changed depending on how much of the gas volcanoes belched into the air and how much got removed through geologic processes. On time scales of hundreds to thousands of years, concentrations have changed as carbon has cycled between the ocean, soil and air.

Today, however, we are the ones causing CO2 levels to increase at an unprecedented pace by taking ancient carbon from geologic deposits of fossil fuels and putting it into the atmosphere when we burn them. Since 1750, carbon dioxide concentrations have increased by almost 50 percent. Methane and nitrous oxide, other important anthropogenic greenhouse gases that are released mainly by agricultural activities, have also spiked over the last 250 years.

We know based on the physics described above that this should cause the climate to warm. We also see certain telltale “fingerprints” of greenhouse warming. For example, nights are warming even faster than days because greenhouse gases don’t go away when the sun sets. And upper layers of the atmosphere have actually cooled, because more energy is being trapped by greenhouse gases in the lower atmosphere.

We also know that we are the cause of rising greenhouse gas concentrations — and not just because we can measure the CO2 coming out of tailpipes and smokestacks. We can see it in the chemical signature of the carbon in CO2.

Carbon comes in three different masses: 12, 13 and 14. Things made of organic matter (including fossil fuels) tend to have relatively less carbon-13. Volcanoes tend to produce CO2 with relatively more carbon-13. And over the last century, the carbon in atmospheric CO2 has gotten lighter, pointing to an organic source.

We can tell it’s old organic matter by looking for carbon-14, which is radioactive and decays over time. Fossil fuels are too ancient to have any carbon-14 left in them, so if they were behind rising CO2 levels, you would expect the amount of carbon-14 in the atmosphere to drop, which is exactly what the data show .

It’s important to note that water vapor is the most abundant greenhouse gas in the atmosphere. However, it does not cause warming; instead it responds to it . That’s because warmer air holds more moisture, which creates a snowball effect in which human-caused warming allows the atmosphere to hold more water vapor and further amplifies climate change. This so-called feedback cycle has doubled the warming caused by anthropogenic greenhouse gas emissions.

A common source of confusion when it comes to climate change is the difference between weather and climate. Weather is the constantly changing set of meteorological conditions that we experience when we step outside, whereas climate is the long-term average of those conditions, usually calculated over a 30-year period. Or, as some say: Weather is your mood and climate is your personality.

So while 2 degrees Fahrenheit doesn’t represent a big change in the weather, it’s a huge change in climate. As we’ve already seen, it’s enough to melt ice and raise sea levels, to shift rainfall patterns around the world and to reorganize ecosystems, sending animals scurrying toward cooler habitats and killing trees by the millions.

It’s also important to remember that two degrees represents the global average, and many parts of the world have already warmed by more than that. For example, land areas have warmed about twice as much as the sea surface. And the Arctic has warmed by about 5 degrees. That’s because the loss of snow and ice at high latitudes allows the ground to absorb more energy, causing additional heating on top of greenhouse warming.

Relatively small long-term changes in climate averages also shift extremes in significant ways. For instance, heat waves have always happened, but they have shattered records in recent years. In June of 2020, a town in Siberia registered temperatures of 100 degrees . And in Australia, meteorologists have added a new color to their weather maps to show areas where temperatures exceed 125 degrees. Rising sea levels have also increased the risk of flooding because of storm surges and high tides. These are the foreshocks of climate change.

And we are in for more changes in the future — up to 9 degrees Fahrenheit of average global warming by the end of the century, in the worst-case scenario . For reference, the difference in global average temperatures between now and the peak of the last ice age, when ice sheets covered large parts of North America and Europe, is about 11 degrees Fahrenheit.

Under the Paris Climate Agreement, which President Biden recently rejoined, countries have agreed to try to limit total warming to between 1.5 and 2 degrees Celsius, or 2.7 and 3.6 degrees Fahrenheit, since preindustrial times. And even this narrow range has huge implications . According to scientific studies, the difference between 2.7 and 3.6 degrees Fahrenheit will very likely mean the difference between coral reefs hanging on or going extinct, and between summer sea ice persisting in the Arctic or disappearing completely. It will also determine how many millions of people suffer from water scarcity and crop failures, and how many are driven from their homes by rising seas. In other words, one degree Fahrenheit makes a world of difference.

Earth’s climate has always changed. Hundreds of millions of years ago, the entire planet froze . Fifty million years ago, alligators lived in what we now call the Arctic . And for the last 2.6 million years, the planet has cycled between ice ages when the planet was up to 11 degrees cooler and ice sheets covered much of North America and Europe, and milder interglacial periods like the one we’re in now.

Climate denialists often point to these natural climate changes as a way to cast doubt on the idea that humans are causing climate to change today. However, that argument rests on a logical fallacy. It’s like “seeing a murdered body and concluding that people have died of natural causes in the past, so the murder victim must also have died of natural causes,” a team of social scientists wrote in The Debunking Handbook , which explains the misinformation strategies behind many climate myths.

Indeed, we know that different mechanisms caused the climate to change in the past. Glacial cycles, for example, were triggered by periodic variations in Earth’s orbit , which take place over tens of thousands of years and change how solar energy gets distributed around the globe and across the seasons.

These orbital variations don’t affect the planet’s temperature much on their own. But they set off a cascade of other changes in the climate system; for instance, growing or melting vast Northern Hemisphere ice sheets and altering ocean circulation. These changes, in turn, affect climate by altering the amount of snow and ice, which reflect sunlight, and by changing greenhouse gas concentrations. This is actually part of how we know that greenhouse gases have the ability to significantly affect Earth’s temperature.

For at least the last 800,000 years , atmospheric CO2 concentrations oscillated between about 180 parts per million during ice ages and about 280 p.p.m. during warmer periods, as carbon moved between oceans, forests, soils and the atmosphere. These changes occurred in lock step with global temperatures, and are a major reason the entire planet warmed and cooled during glacial cycles, not just the frozen poles.

Today, however, CO2 levels have soared to 420 p.p.m. — the highest they’ve been in at least three million years . The concentration of CO2 is also increasing about 100 times faster than it did at the end of the last ice age. This suggests something else is going on, and we know what it is: Since the Industrial Revolution, humans have been burning fossil fuels and releasing greenhouse gases that are heating the planet now (see Question 5 for more details on how we know this, and Questions 4 and 8 for how we know that other natural forces aren’t to blame).

Over the next century or two, societies and ecosystems will experience the consequences of this climate change. But our emissions will have even more lasting geologic impacts: According to some studies, greenhouse gas levels may have already warmed the planet enough to delay the onset of the next glacial cycle for at least an additional 50,000 years.

The sun is the ultimate source of energy in Earth’s climate system, so it’s a natural candidate for causing climate change. And solar activity has certainly changed over time. We know from satellite measurements and other astronomical observations that the sun’s output changes on 11-year cycles. Geologic records and sunspot numbers, which astronomers have tracked for centuries, also show long-term variations in the sun’s activity, including some exceptionally quiet periods in the late 1600s and early 1800s.

We know that, from 1900 until the 1950s, solar irradiance increased. And studies suggest that this had a modest effect on early 20th century climate, explaining up to 10 percent of the warming that’s occurred since the late 1800s. However, in the second half of the century, when the most warming occurred, solar activity actually declined . This disparity is one of the main reasons we know that the sun is not the driving force behind climate change.

Another reason we know that solar activity hasn’t caused recent warming is that, if it had, all the layers of the atmosphere should be heating up. Instead, data show that the upper atmosphere has actually cooled in recent decades — a hallmark of greenhouse warming .

So how about volcanoes? Eruptions cool the planet by injecting ash and aerosol particles into the atmosphere that reflect sunlight. We’ve observed this effect in the years following large eruptions. There are also some notable historical examples, like when Iceland’s Laki volcano erupted in 1783, causing widespread crop failures in Europe and beyond, and the “ year without a summer ,” which followed the 1815 eruption of Mount Tambora in Indonesia.

Since volcanoes mainly act as climate coolers, they can’t really explain recent warming. However, scientists say that they may also have contributed slightly to rising temperatures in the early 20th century. That’s because there were several large eruptions in the late 1800s that cooled the planet, followed by a few decades with no major volcanic events when warming caught up. During the second half of the 20th century, though, several big eruptions occurred as the planet was heating up fast. If anything, they temporarily masked some amount of human-caused warming.

The second way volcanoes can impact climate is by emitting carbon dioxide. This is important on time scales of millions of years — it’s what keeps the planet habitable (see Question 5 for more on the greenhouse effect). But by comparison to modern anthropogenic emissions, even big eruptions like Krakatoa and Mount St. Helens are just a drop in the bucket. After all, they last only a few hours or days, while we burn fossil fuels 24-7. Studies suggest that, today, volcanoes account for 1 to 2 percent of total CO2 emissions.

When a big snowstorm hits the United States, climate denialists can try to cite it as proof that climate change isn’t happening. In 2015, Senator James Inhofe, an Oklahoma Republican, famously lobbed a snowball in the Senate as he denounced climate science. But these events don’t actually disprove climate change.

While there have been some memorable storms in recent years, winters are actually warming across the world. In the United States, average temperatures in December, January and February have increased by about 2.5 degrees this century.

On the flip side, record cold days are becoming less common than record warm days. In the United States, record highs now outnumber record lows two-to-one . And ever-smaller areas of the country experience extremely cold winter temperatures . (The same trends are happening globally.)

So what’s with the blizzards? Weather always varies, so it’s no surprise that we still have severe winter storms even as average temperatures rise. However, some studies suggest that climate change may be to blame. One possibility is that rapid Arctic warming has affected atmospheric circulation, including the fast-flowing, high-altitude air that usually swirls over the North Pole (a.k.a. the Polar Vortex ). Some studies suggest that these changes are bringing more frigid temperatures to lower latitudes and causing weather systems to stall , allowing storms to produce more snowfall. This may explain what we’ve experienced in the U.S. over the past few decades, as well as a wintertime cooling trend in Siberia , although exactly how the Arctic affects global weather remains a topic of ongoing scientific debate .

Climate change may also explain the apparent paradox behind some of the other places on Earth that haven’t warmed much. For instance, a splotch of water in the North Atlantic has cooled in recent years, and scientists say they suspect that may be because ocean circulation is slowing as a result of freshwater streaming off a melting Greenland . If this circulation grinds almost to a halt, as it’s done in the geologic past, it would alter weather patterns around the world.

Not all cold weather stems from some counterintuitive consequence of climate change. But it’s a good reminder that Earth’s climate system is complex and chaotic, so the effects of human-caused changes will play out differently in different places. That’s why “global warming” is a bit of an oversimplification. Instead, some scientists have suggested that the phenomenon of human-caused climate change would more aptly be called “ global weirding .”

Extreme weather and natural disasters are part of life on Earth — just ask the dinosaurs. But there is good evidence that climate change has increased the frequency and severity of certain phenomena like heat waves, droughts and floods. Recent research has also allowed scientists to identify the influence of climate change on specific events.

Let’s start with heat waves . Studies show that stretches of abnormally high temperatures now happen about five times more often than they would without climate change, and they last longer, too. Climate models project that, by the 2040s, heat waves will be about 12 times more frequent. And that’s concerning since extreme heat often causes increased hospitalizations and deaths, particularly among older people and those with underlying health conditions. In the summer of 2003, for example, a heat wave caused an estimated 70,000 excess deaths across Europe. (Human-caused warming amplified the death toll .)

Climate change has also exacerbated droughts , primarily by increasing evaporation. Droughts occur naturally because of random climate variability and factors like whether El Niño or La Niña conditions prevail in the tropical Pacific. But some researchers have found evidence that greenhouse warming has been affecting droughts since even before the Dust Bowl . And it continues to do so today. According to one analysis , the drought that afflicted the American Southwest from 2000 to 2018 was almost 50 percent more severe because of climate change. It was the worst drought the region had experienced in more than 1,000 years.

Rising temperatures have also increased the intensity of heavy precipitation events and the flooding that often follows. For example, studies have found that, because warmer air holds more moisture, Hurricane Harvey, which struck Houston in 2017, dropped between 15 and 40 percent more rainfall than it would have without climate change.

It’s still unclear whether climate change is changing the overall frequency of hurricanes, but it is making them stronger . And warming appears to favor certain kinds of weather patterns, like the “ Midwest Water Hose ” events that caused devastating flooding across the Midwest in 2019 .

It’s important to remember that in most natural disasters, there are multiple factors at play. For instance, the 2019 Midwest floods occurred after a recent cold snap had frozen the ground solid, preventing the soil from absorbing rainwater and increasing runoff into the Missouri and Mississippi Rivers. These waterways have also been reshaped by levees and other forms of river engineering, some of which failed in the floods.

Wildfires are another phenomenon with multiple causes. In many places, fire risk has increased because humans have aggressively fought natural fires and prevented Indigenous peoples from carrying out traditional burning practices. This has allowed fuel to accumulate that makes current fires worse .

However, climate change still plays a major role by heating and drying forests, turning them into tinderboxes. Studies show that warming is the driving factor behind the recent increases in wildfires; one analysis found that climate change is responsible for doubling the area burned across the American West between 1984 and 2015. And researchers say that warming will only make fires bigger and more dangerous in the future.

It depends on how aggressively we act to address climate change. If we continue with business as usual, by the end of the century, it will be too hot to go outside during heat waves in the Middle East and South Asia . Droughts will grip Central America, the Mediterranean and southern Africa. And many island nations and low-lying areas, from Texas to Bangladesh, will be overtaken by rising seas. Conversely, climate change could bring welcome warming and extended growing seasons to the upper Midwest , Canada, the Nordic countries and Russia . Farther north, however, the loss of snow, ice and permafrost will upend the traditions of Indigenous peoples and threaten infrastructure.

It’s complicated, but the underlying message is simple: unchecked climate change will likely exacerbate existing inequalities . At a national level, poorer countries will be hit hardest, even though they have historically emitted only a fraction of the greenhouse gases that cause warming. That’s because many less developed countries tend to be in tropical regions where additional warming will make the climate increasingly intolerable for humans and crops. These nations also often have greater vulnerabilities, like large coastal populations and people living in improvised housing that is easily damaged in storms. And they have fewer resources to adapt, which will require expensive measures like redesigning cities, engineering coastlines and changing how people grow food.

Already, between 1961 and 2000, climate change appears to have harmed the economies of the poorest countries while boosting the fortunes of the wealthiest nations that have done the most to cause the problem, making the global wealth gap 25 percent bigger than it would otherwise have been. Similarly, the Global Climate Risk Index found that lower income countries — like Myanmar, Haiti and Nepal — rank high on the list of nations most affected by extreme weather between 1999 and 2018. Climate change has also contributed to increased human migration, which is expected to increase significantly .

Even within wealthy countries, the poor and marginalized will suffer the most. People with more resources have greater buffers, like air-conditioners to keep their houses cool during dangerous heat waves, and the means to pay the resulting energy bills. They also have an easier time evacuating their homes before disasters, and recovering afterward. Lower income people have fewer of these advantages, and they are also more likely to live in hotter neighborhoods and work outdoors, where they face the brunt of climate change.

These inequalities will play out on an individual, community, and regional level. A 2017 analysis of the U.S. found that, under business as usual, the poorest one-third of counties, which are concentrated in the South, will experience damages totaling as much as 20 percent of gross domestic product, while others, mostly in the northern part of the country, will see modest economic gains. Solomon Hsiang, an economist at University of California, Berkeley, and the lead author of the study, has said that climate change “may result in the largest transfer of wealth from the poor to the rich in the country’s history.”

Even the climate “winners” will not be immune from all climate impacts, though. Desirable locations will face an influx of migrants. And as the coronavirus pandemic has demonstrated, disasters in one place quickly ripple across our globalized economy. For instance, scientists expect climate change to increase the odds of multiple crop failures occurring at the same time in different places, throwing the world into a food crisis .

On top of that, warmer weather is aiding the spread of infectious diseases and the vectors that transmit them, like ticks and mosquitoes . Research has also identified troubling correlations between rising temperatures and increased interpersonal violence , and climate change is widely recognized as a “threat multiplier” that increases the odds of larger conflicts within and between countries. In other words, climate change will bring many changes that no amount of money can stop. What could help is taking action to limit warming.

One of the most common arguments against taking aggressive action to combat climate change is that doing so will kill jobs and cripple the economy. But this implies that there’s an alternative in which we pay nothing for climate change. And unfortunately, there isn’t. In reality, not tackling climate change will cost a lot , and cause enormous human suffering and ecological damage, while transitioning to a greener economy would benefit many people and ecosystems around the world.

Let’s start with how much it will cost to address climate change. To keep warming well below 2 degrees Celsius, the goal of the Paris Climate Agreement, society will have to reach net zero greenhouse gas emissions by the middle of this century. That will require significant investments in things like renewable energy, electric cars and charging infrastructure, not to mention efforts to adapt to hotter temperatures, rising sea-levels and other unavoidable effects of current climate changes. And we’ll have to make changes fast.

Estimates of the cost vary widely. One recent study found that keeping warming to 2 degrees Celsius would require a total investment of between $4 trillion and $60 trillion, with a median estimate of $16 trillion, while keeping warming to 1.5 degrees Celsius could cost between $10 trillion and $100 trillion, with a median estimate of $30 trillion. (For reference, the entire world economy was about $88 trillion in 2019.) Other studies have found that reaching net zero will require annual investments ranging from less than 1.5 percent of global gross domestic product to as much as 4 percent . That’s a lot, but within the range of historical energy investments in countries like the U.S.

Now, let’s consider the costs of unchecked climate change, which will fall hardest on the most vulnerable. These include damage to property and infrastructure from sea-level rise and extreme weather, death and sickness linked to natural disasters, pollution and infectious disease, reduced agricultural yields and lost labor productivity because of rising temperatures, decreased water availability and increased energy costs, and species extinction and habitat destruction. Dr. Hsiang, the U.C. Berkeley economist, describes it as “death by a thousand cuts.”

As a result, climate damages are hard to quantify. Moody’s Analytics estimates that even 2 degrees Celsius of warming will cost the world $69 trillion by 2100, and economists expect the toll to keep rising with the temperature. In a recent survey , economists estimated the cost would equal 5 percent of global G.D.P. at 3 degrees Celsius of warming (our trajectory under current policies) and 10 percent for 5 degrees Celsius. Other research indicates that, if current warming trends continue, global G.D.P. per capita will decrease between 7 percent and 23 percent by the end of the century — an economic blow equivalent to multiple coronavirus pandemics every year. And some fear these are vast underestimates .

Already, studies suggest that climate change has slashed incomes in the poorest countries by as much as 30 percent and reduced global agricultural productivity by 21 percent since 1961. Extreme weather events have also racked up a large bill. In 2020, in the United States alone, climate-related disasters like hurricanes, droughts, and wildfires caused nearly $100 billion in damages to businesses, property and infrastructure, compared to an average of $18 billion per year in the 1980s.

Given the steep price of inaction, many economists say that addressing climate change is a better deal . It’s like that old saying: an ounce of prevention is worth a pound of cure. In this case, limiting warming will greatly reduce future damage and inequality caused by climate change. It will also produce so-called co-benefits, like saving one million lives every year by reducing air pollution, and millions more from eating healthier, climate-friendly diets. Some studies even find that meeting the Paris Agreement goals could create jobs and increase global G.D.P . And, of course, reining in climate change will spare many species and ecosystems upon which humans depend — and which many people believe to have their own innate value.

The challenge is that we need to reduce emissions now to avoid damages later, which requires big investments over the next few decades. And the longer we delay, the more we will pay to meet the Paris goals. One recent analysis found that reaching net-zero by 2050 would cost the U.S. almost twice as much if we waited until 2030 instead of acting now. But even if we miss the Paris target, the economics still make a strong case for climate action, because every additional degree of warming will cost us more — in dollars, and in lives.

Veronica Penney contributed reporting.

Illustration photographs by Esther Horvath, Max Whittaker, David Maurice Smith and Talia Herman for The New York Times; Esther Horvath/Alfred-Wegener-Institut

An earlier version of this article misidentified the authors of The Debunking Handbook. It was written by social scientists who study climate communication, not a team of climate scientists.

How we handle corrections

What’s Up in Space and Astronomy

Keep track of things going on in our solar system and all around the universe..

Never miss an eclipse, a meteor shower, a rocket launch or any other 2024 event  that’s out of this world with  our space and astronomy calendar .

A new set of computer simulations, which take into account the effects of stars moving past our solar system, has effectively made it harder to predict Earth’s future and reconstruct its past.

Dante Lauretta, the planetary scientist who led the OSIRIS-REx mission to retrieve a handful of space dust , discusses his next final frontier.

A nova named T Coronae Borealis lit up the night about 80 years ago. Astronomers say it’s expected to put on another show  in the coming months.

Voyager 1, the 46-year-old first craft in interstellar space which flew by Jupiter and Saturn in its youth, may have gone dark .

Is Pluto a planet? And what is a planet, anyway? Test your knowledge here .

Advertisement

latest essay on climate change

Climate change impacts terrorist activity, study finds

C hanging weather patterns induced by climate change are contributing to shifts in the location of terrorist activity, according to new research.

An exploratory study led by extremism expert Dr. Jared Dmello, from the University of Adelaide's School of Social Sciences, found some climatological variables affected terrorist activity in India.

"Suitability analyses indicate that all the climatological variables tested—temperature, precipitation, and elevation—relate to shifting patterns of terrorist activity," says Dr. Dmello.

"Urban centers have increasingly grown in population density, particularly in spaces with favorable climates, and some of the more remote areas once used by extremists have experienced such increasingly dynamic climates that they are no longer fit for human habitation, forcing these groups to migrate elsewhere."

It was not only the intensity of these climatological variables that led to terrorists moving to new locales, this shifting of terrorist activity was also seasonal.

"This research shows that stopping the damaging effects of climate change is not just an environmental issue but one that is directly tied to national security and defense," says Dr. Dmello, who was recently announced as the inaugural recipient of the Early Career Award from the Academy of Criminal Justice Sciences' Security and Crime Prevention Section.

"In this study, we focus on attack location, but the data also suggests other forms of extremist behavior, such as training location, are likely shifting in response to climate change as well."

The study, published in the Journal of Applied Security Research , concentrated on terrorist activity in India between 1998–2017, a period during which there were 9,096 terrorist incidents recorded by the Global Terrorism Database.

"Average temperatures in India reached record highs during our 20-year study period," said Dr. Dmello.

"This time frame represents a broad enough range to demonstrate climate change, while also availing of the most recent reliable data that covers both the climate change and extremism dimensions for the country."

This new and evolving understanding of how climate change affects patterns of terrorism is important knowledge for governments across the world, including Australia's, to inform national security and defense strategies.

"While terrorism and violent extremism manifests differently in Australia, with far lower levels of attacks than India, radicalization is still a salient challenge here and one that the Australian Government has established as a national priority," says Dr. Dmello.

"To effectively mitigate radicalization, other critical issues, such as homelessness, food insecurity, water and energy crises, and enhanced social equity, are essential for ensuring a more secure space for us all."

Dr. Dmello, who joined the University of Adelaide at the beginning of 2024, also recently co-edited a book examining security in the Arctic from a multi-disciplinary lens and will continue his research into terrorism and extremism in the Australian context.

"Some of my recent projects have been trying to understand how emerging issues impact radicalization here in Australia in an effort to find ways to partner with government and law enforcement to prevent engagement with extremist ideologies," he says.

"I am also interested in expanding on my research in this area to investigate the role of water and food inequities on radicalization around the world."

More information: Jared R. Dmello et al, Monsoon Marauders and Summer Violence: Exploring the Spatial Relationship between Climate Change and Terrorist Activity in India, Journal of Applied Security Research (2024). DOI: 10.1080/19361610.2024.2322238

Provided by University of Adelaide

Monsoon clouds over a mountain range in India. Credit: Rabhimb Bardhan

IMAGES

  1. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    latest essay on climate change

  2. ≫ Global Climate Change Free Essay Sample on Samploon.com

    latest essay on climate change

  3. ≫ Human Activities as the Reason of Climate Change Free Essay Sample on

    latest essay on climate change

  4. An easy guide on how to write an essay on climate change

    latest essay on climate change

  5. Write A Short Essay On Global Warming

    latest essay on climate change

  6. climate change essay assessment KS3

    latest essay on climate change

COMMENTS

  1. Climate change widespread, rapid, and intensifying

    Climate change widespread, rapid, and intensifying - IPCC. GENEVA, Aug 9 - Scientists are observing changes in the Earth's climate in every region and across the whole climate system, according to the latest Intergovernmental Panel on Climate Change (IPCC) Report, released today. Many of the changes observed in the climate are ...

  2. Climate change

    Climate change refers to a statistically defined change in the average and/or variability of the climate system, this includes the atmosphere, the water cycle, the land surface, ice and the living ...

  3. Climate Change Is Speeding Toward Catastrophe. The Next Decade Is

    It says that global average temperatures are estimated to rise 1.5 degrees Celsius (2.7 degrees Fahrenheit) above preindustrial levels sometime around "the first half of the 2030s," as humans ...

  4. Beyond Catastrophe: A New Climate Reality Is Coming Into View

    The cost of global climate damage has already run into the trillions, and the bill for adaptation in the developing world could reach $300 billion annually by 2030. Galveston, Texas, is ...

  5. UN climate report: It's 'now or never' to limit global warming to 1.5

    A new flagship UN report on climate change out Monday indicating that harmful carbon emissions from 2010-2019 have never been higher in human history, is proof that the world is on a "fast track" to disaster, António Guterres has warned, with scientists arguing that it's 'now or never' to limit global warming to 1.5 degrees.

  6. Climate change: a threat to human wellbeing and health of the ...

    Climate Change 2022: Impacts, Adaptation and Vulnerability. ... Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as ...

  7. Climate Change 2023: Synthesis Report

    The much-anticipated Climate Change 2023: Synthesis Report is based on years of work by hundreds of scientists during the Intergovernmental Panel on Climate Change's (IPCC) sixth assessment cycle which began in 2015. The report provides the main scientific input to COP28 and the Global Stocktake at the end of this year, when countries will review progress towards the Paris Agreement goals.

  8. Human, economic, environmental toll of climate change on the rise: WMO

    21 April 2023 Climate and Environment. The relentless advance of climate change brought more drought, flooding and heatwaves to communities around the world last year, compounding threats to people's lives and livelihoods, the UN's World Meteorological Organization (WMO) said on Friday. WMO latest State of the Global Climate report shows ...

  9. Nature Climate Change

    ISSN 1758-6798 (online) ISSN 1758-678X (print) Nature Climate Change is dedicated to publishing the most significant research across the physical and social sciences on the impacts of global ...

  10. Climate change is hitting the planet faster than scientists ...

    Issued last August, the first instalment focused on recent climate science, whereas the latest one looks at the impacts of climate change on people and ecosystems. It will be followed in early ...

  11. Scientists deliver 'final warning' on climate crisis: act now or it's

    The Intergovernmental Panel on Climate Change (IPCC), made up of the world's leading climate scientists, set out the final part of its mammoth sixth assessment report on Monday.

  12. Climate and Environment

    The latest in a string of ambitious climate regulations aims to clean up the heaviest polluters on the road. But truckers are worried. By Coral Davenport and Jack Ewing

  13. 'On the Move' examines how climate change will alter where people live

    April 3, 2024 at 10:30 am. On the Move. Abrahm Lustgarten. Farrar, Straus and Giroux, $30. Ellen Herdell's nerves were nearing a breaking point. The fortysomething, lifelong Californian had ...

  14. Evidence

    Takeaways The rate of change since the mid-20th century is unprecedented over millennia. Earth's climate has changed throughout history. Just in the last 800,000 years, there have been eight cycles of ice ages and warmer periods, with the end of the last ice age about 11,700 years ago marking the beginning of the modern climate […]

  15. 10 ways you can help fight the climate crisis

    Here are 10 ways you can be part of the climate solution: 1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  16. Our Future Is Now

    Climate change is defined as "a pattern of change affecting global or regional climate," based on "average temperature and rainfall measurements" as well as the frequency of extreme weather events. 1 These varied temperature and weather events link back to both natural incidents and human activity. 2 Likewise, the term global warming ...

  17. Climate Changes, So Should We...

    In 2015, the Paris Agreement, which is legally binding on climate change, has been accepted by approximately 191 countries to limit global warming to below 2, if possible, to 1.5. The countries have committed to achieve this primary goal and minimise global warming. To accomplish this goal requires all parties to put forward their best efforts ...

  18. A review of the global climate change impacts, adaptation, and

    Climate change (CC) is an inter-governmental complex challenge globally with its influence over various components of the ecological, ... It excluded 40 irrelevant papers due to copied from a previous search after readings tiles, abstract and full pieces. The criteria for inclusion were: (i) articles focused on "Global Climate Change Impacts ...

  19. Research articles

    Increasing exposure to climate hazards under climate change will disproportionately impact poor communities. This study shows that disruptions to infrastructure service threaten progress towards ...

  20. Climate Change Assay: A Spark Of Change

    Bahçeşehir College is committed to increasing students' awareness of the changing world we live in. This climate change essay competition saw many students submitting well thought out pieces of writing. These essays were marked on their format, creativity, organisation, clarity, unity/development of thought, and grammar/mechanics.

  21. How Climate Change Is Changing Heatwaves

    March 29, 2024. When heat waves swept across large parts of the planet last summer, in many places the oppressive temperatures loitered for days or weeks at a time. As climate change warms the ...

  22. Is the world focused enough on climate change?

    Is the world focused enough on climate change? There are fears that wars in Gaza and Ukraine may deflect attention from the climate crisis. Read more. 4 Apr 2024.

  23. Essay on Climate Change: Check Samples in 100, 250 Words

    Essay On Climate Change in 100 Words. Climate change refers to long-term alterations in Earth's climate patterns, primarily driven by human activities, such as burning fossil fuels and deforestation, which release greenhouse gases into the atmosphere. These gases trap heat, leading to global warming. The consequences of climate change are ...

  24. Climate change boosts inflation, key study finds

    It may be time to add human-caused climate change to the list of factors likely to worsen inflation, a new study finds.. Why it matters: The data suggests climate change is rippling through entire economies, instead of affecting the availability or price of particular goods. Zoom in: Published in the peer-reviewed journal Communications: Earth and Environment on March 21, the study shows ...

  25. Scientists warn Australians to prepare for megadroughts lasting more

    New climate modelling suggests Australians should be preparing for the possibility of megadroughts lasting more than 20 years. Research from the Australian National University, published in a ...

  26. Building healthier habitats to resist the impacts of climate change

    CBS News correspondent Jonathan Vigliotti explains how taking steps to mitigate the effects of climate change can save us from the trauma of disasters brought about by extreme weather. Latest. U.S

  27. Kamala Harris to unveil 'historic' $20B investment in climate ...

    Vice President Kamala Harris will be in Charlotte, N.C. on Thursday to announce a historic $20 billion investment in tens of thousands of climate and clean energy projects across the United States.

  28. Research articles

    Read the latest Research articles from Nature Climate Change. ... Determining progress in adaptation to climate change is challenging, yet critical as climate change impacts increase. A stocktake ...

  29. The Science of Climate Change Explained: Facts, Evidence and Proof

    Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more ...

  30. Climate change impacts terrorist activity, study finds

    The study, published in the. Journal of Applied Security Research. , concentrated on terrorist activity in India between 1998-2017, a period during which there were 9,096 terrorist incidents ...