Coronavirus and schools: Reflections on education one year into the pandemic

Subscribe to the center for universal education bulletin, daphna bassok , daphna bassok nonresident senior fellow - governance studies , brown center on education policy @daphnabassok lauren bauer , lauren bauer fellow - economic studies , associate director - the hamilton project @laurenlbauer stephanie riegg cellini , stephanie riegg cellini nonresident senior fellow - governance studies , brown center on education policy helen shwe hadani , helen shwe hadani former brookings expert @helenshadani michael hansen , michael hansen senior fellow - brown center on education policy , the herman and george r. brown chair - governance studies @drmikehansen douglas n. harris , douglas n. harris nonresident senior fellow - governance studies , brown center on education policy , professor and chair, department of economics - tulane university @douglasharris99 brad olsen , brad olsen senior fellow - global economy and development , center for universal education @bradolsen_dc richard v. reeves , richard v. reeves president - american institute for boys and men @richardvreeves jon valant , and jon valant director - brown center on education policy , senior fellow - governance studies @jonvalant kenneth k. wong kenneth k. wong nonresident senior fellow - governance studies , brown center on education policy.

March 12, 2021

  • 11 min read

One year ago, the World Health Organization declared the spread of COVID-19 a worldwide pandemic. Reacting to the virus, schools at every level were sent scrambling. Institutions across the world switched to virtual learning, with teachers, students, and local leaders quickly adapting to an entirely new way of life. A year later, schools are beginning to reopen, the $1.9 trillion stimulus bill has been passed, and a sense of normalcy seems to finally be in view; in President Joe Biden’s speech last night, he spoke of “finding light in the darkness.” But it’s safe to say that COVID-19 will end up changing education forever, casting a critical light on everything from equity issues to ed tech to school financing.

Below, Brookings experts examine how the pandemic upended the education landscape in the past year, what it’s taught us about schooling, and where we go from here.

Daphna_Bassok_photo.jpg?crop=1519px%2C84px%2C1746px%2C1746px&w=120&ssl=1

In the United States, we tend to focus on the educating roles of public schools, largely ignoring the ways in which schools provide free and essential care for children while their parents work. When COVID-19 shuttered in-person schooling, it eliminated this subsidized child care for many families. It created intense stress for working parents, especially for mothers who left the workforce at a high rate.

The pandemic also highlighted the arbitrary distinction we make between the care and education of elementary school children and children aged 0 to 5 . Despite parents having the same need for care, and children learning more in those earliest years than at any other point, public investments in early care and education are woefully insufficient. The child-care sector was hit so incredibly hard by COVID-19. The recent passage of the American Rescue Plan is a meaningful but long-overdue investment, but much more than a one-time infusion of funds is needed. Hopefully, the pandemic represents a turning point in how we invest in the care and education of young children—and, in turn, in families and society.

LB_headshot_square-1.png?w=120&crop=0%2C0px%2C100%2C120px&ssl=1

Congressional reauthorization of Pandemic EBT for  this school year , its  extension  in the American Rescue Plan (including for summer months), and its place as a  central plank  in the Biden administration’s anti-hunger agenda is well-warranted and evidence based. But much more needs to be done to ramp up the program–even  today , six months after its reauthorization, about half of states do not have a USDA-approved implementation plan.

stephanie-cellini_58392-1_headshot.jpg?w=120&crop=0%2C20px%2C100%2C120px&ssl=1

In contrast, enrollment is up in for-profit and online colleges. The research repeatedly finds weaker student outcomes for these types of institutions relative to community colleges, and many students who enroll in them will be left with more debt than they can reasonably repay. The pandemic and recession have created significant challenges for students, affecting college choices and enrollment decisions in the near future. Ultimately, these short-term choices can have long-term consequences for lifetime earnings and debt that could impact this generation of COVID-19-era college students for years to come.

Helen_Hadani.jpg?crop=0px%2C2px%2C427px%2C427px&w=120&ssl=1

Many U.S. educationalists are drawing on the “build back better” refrain and calling for the current crisis to be leveraged as a unique opportunity for educators, parents, and policymakers to fully reimagine education systems that are designed for the 21st rather than the 20th century, as we highlight in a recent Brookings report on education reform . An overwhelming body of evidence points to play as the best way to equip children with a broad set of flexible competencies and support their socioemotional development. A recent article in The Atlantic shared parent anecdotes of children playing games like “CoronaBall” and “Social-distance” tag, proving that play permeates children’s lives—even in a pandemic.

hansen.jpg?w=120&crop=0%2C30px%2C100%2C120px&ssl=1

Tests play a critical role in our school system. Policymakers and the public rely on results to measure school performance and reveal whether all students are equally served. But testing has also attracted an inordinate share of criticism, alleging that test pressures undermine teacher autonomy and stress students. Much of this criticism will wither away with  different  formats. The current form of standardized testing—annual, paper-based, multiple-choice tests administered over the course of a week of school—is outdated. With widespread student access to computers (now possible due to the pandemic), states can test students more frequently, but in smaller time blocks that render the experience nearly invisible. Computer adaptive testing can match paper’s reliability and provides a shorter feedback loop to boot. No better time than the present to make this overdue change.

Douglas-Harris-High-Res-2010-e1469537794791.jpg?w=120&crop=0%2C0px%2C100%2C120px&ssl=1

A third push for change will come from the outside in. COVID-19 has reminded us not only of how integral schools are, but how intertwined they are with the rest of society. This means that upcoming schooling changes will also be driven by the effects of COVID-19 on the world around us. In particular, parents will be working more from home, using the same online tools that students can use to learn remotely. This doesn’t mean a mass push for homeschooling, but it probably does mean that hybrid learning is here to stay.

brad_olsen_2021.jpg?crop=0px%2C685px%2C1625px%2C1625px&w=120&ssl=1

I am hoping we will use this forced rupture in the fabric of schooling to jettison ineffective aspects of education, more fully embrace what we know works, and be bold enough to look for new solutions to the educational problems COVID-19 has illuminated.

Reeves-headshot.jpg?crop=0px%2C28px%2C580px%2C580px&w=120&ssl=1

There is already a large gender gap in education in the U.S., including in  high school graduation rates , and increasingly in college-going and college completion. While the pandemic appears to be hurting women more than men in the labor market, the opposite seems to be true in education.

jon-valant-headshot_cr.jpg?w=120&crop=0%2C10px%2C100%2C120px&ssl=1

Looking through a policy lens, though, I’m struck by the timing and what that timing might mean for the future of education. Before the pandemic, enthusiasm for the education reforms that had defined the last few decades—choice and accountability—had waned. It felt like a period between reform eras, with the era to come still very unclear. Then COVID-19 hit, and it coincided with a national reckoning on racial injustice and a wake-up call about the fragility of our democracy. I think it’s helped us all see how connected the work of schools is with so much else in American life.

We’re in a moment when our long-lasting challenges have been laid bare, new challenges have emerged, educators and parents are seeing and experimenting with things for the first time, and the political environment has changed (with, for example, a new administration and changing attitudes on federal spending). I still don’t know where K-12 education is headed, but there’s no doubt that a pivot is underway.

Kenneth-Wong-vert_1131-copy.jpg?crop=261px%2C183px%2C1346px%2C1347px&w=120&ssl=1

  • First, state and local leaders must leverage commitment and shared goals on equitable learning opportunities to support student success for all.
  • Second, align and use federal, state, and local resources to implement high-leverage strategies that have proven to accelerate learning for diverse learners and disrupt the correlation between zip code and academic outcomes.
  • Third, student-centered priority will require transformative leadership to dismantle the one-size-fits-all delivery rule and institute incentive-based practices for strong performance at all levels.
  • Fourth, the reconfigured system will need to activate public and parental engagement to strengthen its civic and social capacity.
  • Finally, public education can no longer remain insulated from other policy sectors, especially public health, community development, and social work.

These efforts will strengthen the capacity and prepare our education system for the next crisis—whatever it may be.

Higher Education K-12 Education

Brookings Metro Economic Studies Global Economy and Development Governance Studies

Brown Center on Education Policy Center for Universal Education

Darcy Hutchins, Emily Markovich Morris, Laura Nora, Carolina Campos, Adelaida Gómez Vergara, Nancy G. Gordon, Esmeralda Macana, Karen Robertson

March 28, 2024

Jennifer B. Ayscue, Kfir Mordechay, David Mickey-Pabello

March 26, 2024

Anna Saavedra, Morgan Polikoff, Dan Silver

Mission: Recovering Education in 2021

The World Bank

THE CONTEXT

The COVID-19 pandemic has caused abrupt and profound changes around the world.  This is the worst shock to education systems in decades, with the longest school closures combined with looming recession.  It will set back progress made on global development goals, particularly those focused on education. The economic crises within countries and globally will likely lead to fiscal austerity, increases in poverty, and fewer resources available for investments in public services from both domestic expenditure and development aid. All of this will lead to a crisis in human development that continues long after disease transmission has ended.

Disruptions to education systems over the past year have already driven substantial losses and inequalities in learning. All the efforts to provide remote instruction are laudable, but this has been a very poor substitute for in-person learning.  Even more concerning, many children, particularly girls, may not return to school even when schools reopen. School closures and the resulting disruptions to school participation and learning are projected to amount to losses valued at $10 trillion in terms of affected children’s future earnings.  Schools also play a critical role around the world in ensuring the delivery of essential health services and nutritious meals, protection, and psycho-social support. Thus, school closures have also imperilled children’s overall wellbeing and development, not just their learning.   

It’s not enough for schools to simply reopen their doors after COVID-19. Students will need tailored and sustained support to help them readjust and catch-up after the pandemic. We must help schools prepare to provide that support and meet the enormous challenges of the months ahead. The time to act is now; the future of an entire generation is at stake.

THE MISSION

Mission objective:  To enable all children to return to school and to a supportive learning environment, which also addresses their health and psychosocial well-being and other needs.

Timeframe : By end 2021.

Scope : All countries should reopen schools for complete or partial in-person instruction and keep them open. The Partners - UNESCO , UNICEF , and the World Bank - will join forces to support countries to take all actions possible to plan, prioritize, and ensure that all learners are back in school; that schools take all measures to reopen safely; that students receive effective remedial learning and comprehensive services to help recover learning losses and improve overall welfare; and their teachers are prepared and supported to meet their learning needs. 

Three priorities:

1.    All children and youth are back in school and receive the tailored services needed to meet their learning, health, psychosocial wellbeing, and other needs. 

Challenges : School closures have put children’s learning, nutrition, mental health, and overall development at risk. Closed schools also make screening and delivery for child protection services more difficult. Some students, particularly girls, are at risk of never returning to school. 

Areas of action : The Partners will support the design and implementation of school reopening strategies that include comprehensive services to support children’s education, health, psycho-social wellbeing, and other needs. 

Targets and indicators

2.    All children receive support to catch up on lost learning.

Challenges : Most children have lost substantial instructional time and may not be ready for curricula that were age- and grade- appropriate prior to the pandemic. They will require remedial instruction to get back on track. The pandemic also revealed a stark digital divide that schools can play a role in addressing by ensuring children have digital skills and access.

Areas of action : The Partners will (i) support the design and implementation of large-scale remedial learning at different levels of education, (ii) launch an open-access, adaptable learning assessment tool that measures learning losses and identifies learners’ needs, and (iii) support the design and implementation of digital transformation plans that include components on both infrastructure and ways to use digital technology to accelerate the development of foundational literacy and numeracy skills. Incorporating digital technologies to teach foundational skills could complement teachers’ efforts in the classroom and better prepare children for future digital instruction.   

While incorporating remedial education, social-emotional learning, and digital technology into curricula by the end of 2021 will be a challenge for most countries, the Partners agree that these are aspirational targets that they should be supporting countries to achieve this year and beyond as education systems start to recover from the current crisis.

3.   All teachers are prepared and supported to address learning losses among their students and to incorporate  digital technology into their teaching.

Challenges : Teachers are in an unprecedented situation in which they must make up for substantial loss of instructional time from the previous school year and teach the current year’s curriculum. They must also protect their own health in school. Teachers will need training, coaching, and other means of support to get this done. They will also need to be prioritized for the COVID-19 vaccination, after frontline personnel and high-risk populations.  School closures also demonstrated that in addition to digital skills, teachers may also need support to adapt their pedagogy to deliver instruction remotely. 

Areas of action : The Partners will advocate for teachers to be prioritized in COVID-19 vaccination campaigns, after frontline personnel and high-risk populations, and provide capacity-development on pedagogies for remedial learning and digital and blended teaching approaches. 

Country level actions and global support

UNESCO, UNICEF, and World Bank are joining forces to support countries to achieve the Mission, leveraging their expertise and actions on the ground to support national efforts and domestic funding.

Country Level Action

1.  Mobilize team to support countries in achieving the three priorities

The Partners will collaborate and act at the country level to support governments in accelerating actions to advance the three priorities.

2.  Advocacy to mobilize domestic resources for the three priorities

The Partners will engage with governments and decision-makers to prioritize education financing and mobilize additional domestic resources.

Global level action

1.  Leverage data to inform decision-making

The Partners will join forces to   conduct surveys; collect data; and set-up a global, regional, and national real-time data-warehouse.  The Partners will collect timely data and analytics that provide access to information on school re-openings, learning losses, drop-outs, and transition from school to work, and will make data available to support decision-making and peer-learning.

2.  Promote knowledge sharing and peer-learning in strengthening education recovery

The Partners will join forces in sharing the breadth of international experience and scaling innovations through structured policy dialogue, knowledge sharing, and peer learning actions.

The time to act on these priorities is now. UNESCO, UNICEF, and the World Bank are partnering to help drive that action.

Last Updated: Mar 30, 2021

  • (BROCHURE, in English) Mission: Recovering Education 2021
  • (BROCHURE, in French) Mission: Recovering Education 2021
  • (BROCHURE, in Spanish) Mission: Recovering Education 2021
  • (BLOG) Mission: Recovering Education 2021
  • (VIDEO, Arabic) Mission: Recovering Education 2021
  • (VIDEO, French) Mission: Recovering Education 2021
  • (VIDEO, Spanish) Mission: Recovering Education 2021
  • World Bank Education and COVID-19
  • World Bank Blogs on Education

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

ORIGINAL RESEARCH article

Teaching and learning in times of covid-19: uses of digital technologies during school lockdowns.

\r\nJuan-Ignacio Pozo*&#x;

  • Department of Basic Psychology, Faculty of Psychology, Autonomous University of Madrid, Madrid, Spain

The closure of schools as a result of COVID-19 has been a critical global incident from which to rethink how education works in all our countries. Among the many changes generated by this crisis, all teaching became mediated by digital technologies. This paper intends to analyze the activities carried out during this time through digital technologies and the conceptions of teaching and learning that they reflect. We designed a Likert-type online questionnaire to measure the frequency of teaching activities. It was answered by 1,403 teachers from Spain (734 primary and 669 secondary education teachers). The proposed activities varied depending on the learning promoted (reproductive or constructive), the learning outcomes (verbal, procedural, or attitudinal), the type of assessment to which the activities were directed, and the presence of cooperative activities. The major result of this study was that teachers used reproductive activities more frequently than constructive ones. We also found that most activities were those favoring verbal and attitudinal learning. The cooperative activities were the least frequent. Finally, through a cluster analysis, we identified four teaching profiles depending on the frequency and type of digital technologies use: Passive, Active, Reproductive, and Interpretative. The variable that produced the most consistent differences was previous digital technologies use These results show that Information and Communication Technologies (ICT) uses are reproductive rather than constructive, which impedes effective digital technologies integration into the curriculum so that students gain 21st-century competencies.

Introduction

When schools were closed in most countries in March 2020 because of the COVID-19 pandemic, teachers had no other option but to change their classrooms into online learning spaces. It was a critical global incident. In research on identity and teacher training ( Tripp, 1993 ; Butterfield et al., 2005 ; Monereo, 2010 ), a critical incident is an unexpected situation that hinders the development of the planned activity and that, by exceeding a certain emotional threshold, puts the identity in crisis and obliges that teachers review their concepts, strategies, and feelings. Thus, these incidents can become meaningful resources for training and changing teaching and learning practices because they allow us to review our deep beliefs ( Monereo et al., 2015 ).

The critical global incident generated by the pandemic forced most teachers to assume virtual teaching where they had to use digital technologies, sometimes for the first time, to facilitate their students’ learning. The closure of schools as a consequence of COVID-19 led to substantial changes in education with profound consequences. Today we know that educational inequalities have widened ( Dorn et al., 2020 ), while students have suffered greater social and emotional imbalances ( Colao et al., 2020 ). In this context, families have also been more involved in the school education of their children ( Bubb and Jones, 2020 ). Moreover, concerning the objectives of this study, it has been necessary to rethink the teaching strategies in the new virtual classrooms. In fact, this research focuses precisely on analyzing the uses that teachers made of the digital technologies or Information and Communication Technologies (ICT) (from now on, we will use this acronym) during the confinement to become familiar with their practices and use them to review their conceptions of teaching and learning.

For several decades, many authors have argued that ICT as educational devices facilitate the adaptation of teaching to each student. Some argue this is because they can promote collaboration, interactivity, the use of multimedia codes, and greater control of learning by the learner (e.g., Jaffee, 1997 ; Collins and Halverson, 2009 ). In this way, their integration in the curriculum would contribute to the acquisition of 21st-century competencies (autonomy, collaboration, critical thinking, and problem-solving) that the OECD ( Ananiadou and Claro, 2009 ) links to the so-called “global competence” that should define the current education ( Ertmer et al., 2015 ).

However, after decades of use of ICT in classrooms, they have not fully achieved their promise to transform teaching and learning processes. The results of a lot of international studies are, in fact, quite discouraging, like those claimed by the PISA studies ( OECD, 2015 ). In its report, the OECD(2015 , p. 3) concludes that “the results also show no appreciable improvements in student achievement in reading, mathematics or science in the countries that had invested heavily in ICT for education.” Thus, Biagi and Loi (2013) found that the more education ICT uses reported, the less learning in reading, mathematics, and science achieved. These data caused even Andreas Schleicher, head and coordinator of PISA studies, to claim that “the reality is that technology is doing more harm than good in our schools today” ( Bagshaw, 2016 ).

These conclusions contrast with the results obtained in most of the experimental research on the effects of ICT on learning. A decade ago, after conducting a second-order meta-analysis of 25 meta-analyses, Tamim et al.(2011 , p. 14) found “a significant positive small to moderate effect size favoring the utilization of technology in the experimental condition over more traditional instruction (i.e., technology-free) in the control group,” a conclusion that is still valid today. Various studies and meta-analyses reflect moderate but positive effects on learning, whether for example from the use of touch screens in preschools ( Xie et al., 2018 ), from cell phones ( Alrasheedi et al., 2015 ; Sung et al., 2015 ) or video games ( Clark et al., 2016 ; Mayer, 2019 ). It has also been found that they favor collaboration in secondary education ( Corcelles Seuba and Castelló, 2015 ) or learning mathematics ( Li and Ma, 2010 ; Genlott and Grönlund, 2016 ), science ( Hennessy et al., 2007 ) or second languages ( Farías et al., 2010 ).

What is the reason for this disagreement between research conducted in experimental laboratories and large-scale studies? Many factors could explain this distance ( de Aldama, 2020 ). But one difference is that the experimental studies have been carefully designed and controlled to promote these forms of learning mentioned above, while the usual work in the classroom is mediated by the activity of teachers who, in most cases, have little training using ICT ( Sigalés et al., 2008 ). Several authors ( Gorder, 2008 ; Comi et al., 2017 ; Tondeur et al., 2017 ) conclude that it is not the ICT themselves that can transform the classroom and learning, but rather the use that teachers make of them. While the experimental studies mostly promote activities that encourage autonomous learning ( Collins and Halverson, 2009 ), the most widespread uses of ICT, as reflected in these international studies with more diverse samples, report other kinds of use whose benefits are more doubtful.

Different classifications of teachers’ use of ICT in the classroom have been proposed in recent years (e.g., Gorder, 2008 ; Mama and Hennessy, 2013 ; Comi et al., 2017 ). Tondeur et al. (2008a) differentiate three types of educational computer use: (a) basic computer skills; (b) use of computers as an information tool, and (c) use of them as a learning tool. Laying aside the acquisition of basic skills related to digital devices, learning is promoted by the last two uses that lead to second-order digital skills related to information management and its conversion into knowledge ( Fulton, 1997 ; Gorder, 2008 ). Thus, the distinction is usually made between two types of use. The first use is aimed at traditional teaching, focused on the transmission and access to information, and usually called teacher-centered use (although perhaps it should be called content-centered use). The second one, called student-centered use, promotes diverse competencies (autonomy, collaboration, critical thinking, argumentation, and problem-solving) and is part of the Global Competence characteristic of 21st-century education ( Ananiadou and Claro, 2009 ; OECD, 2019 , 2020 ). According to Tondeur et al. (2017) , integration of ICT in education requires assuming a constructivist conception of learning and adopting a student-centered approach in which the students manage the information through the ICT instead of, as in the more traditional approach (content-centered), it being the teacher who uses the ICT.

The experimental studies mentioned above show that student-centered approaches improve verbal earning, producing a better understanding of the subjects studied, promoting self-regulation of the learning processes themselves, and generating critical and collaborative attitudes toward knowledge. Thus, Comi et al.(2017 , pp 36–37), after analyzing data from different standardized assessments, conclude: “computer-based teaching practices increase student performance if they are aimed at increasing students’ awareness of ICT use and at improving their navigation critical skills, developing students’ ability to distinguish between relevant and irrelevant material and to access, locate, extract, evaluate, and organize digital information.” Besides, they also found a slight negative correlation between using ICT to convey information and academic performance.

In spite of these better results of adopting student-centered uses, the studies support that the most frequent uses in classrooms are still centered on the teachers, who indeed use ICT as a substitute for other more traditional resources to transmit information ( Loveless and Dore, 2002 ; Sigalés et al., 2008 ; de Aldama and Pozo, 2016 ). Even if what Ertmer (1999) called type I barriers are overcome, related to the availability of these technological resources and the working conditions in the centers, several studies show that there are other types II barriers that limit the use of ICT ( Ertmer et al., 2015 ); in particular, the conceptions about learning and teaching to the extent that they mediate the use of ICT ( Hermans et al., 2008 ).

Different studies have shown that these teachers’ beliefs about learning and teaching are the best predictor of the use made of ICT in the classroom ( Ertmer, 2005 ; Ertmer et al., 2015 ). Most of the work on these beliefs ( Hofer and Pintrich, 1997 , 2002 ; Pozo et al., 2006 ; Fives and Gill, 2015 ) identifies two types of conceptions: some closer to a reproductive vision of learning, which would be related to the teacher or content-centered teaching uses, and others nearer to constructivist perspectives, which promote student-centered teaching uses. Studies show teachers who have constructivist beliefs tend to use more ICT than those with more traditional beliefs ( Judson, 2006 ; Law and Chow, 2008 ; Ertmer et al., 2015 ). They also employ them in a more student-centered way, and their uses are oriented toward the development of problem-solving skills ( Tondeur et al., 2017 ). On the other hand, teachers with more traditional beliefs use them primarily to present information ( Ertmer et al., 2012 ).

However, the relationship between conceptions and educational practices is not so clear and linear ( Liu, 2011 ; Fives and Buehl, 2012 ; Tsai and Chai, 2012 ; Mama and Hennessy, 2013 ; Ertmer et al., 2015 ; de Aldama and Pozo, 2016 ; de Aldama, 2020 ). Many studies show a mismatch between beliefs and practices, above all, when we refer to beliefs closer to constructivism that do not always correspond to constructive or student-centered practices. We can distinguish three types of arguments that explain the mismatches. First, the beliefs seem to be more complex and less dichotomous than what is assumed ( Ertmer et al., 2015 ). The studies comparing beliefs and practices tend to focus on the more extreme positions of the spectrum -reproductive vs. constructive beliefs-, despite research showing they are part of a continuum of intermediate beliefs between both aspects ( Hofer and Pintrich, 1997 , 2002 ; Pérez Echeverría et al., 2006 ). Thus, for example, the so-called interpretive beliefs maintain traditional reproductive epistemological positions. People who have these conceptions think that learning is an exact reflection of reality or the content which should be learned, whereas they also think teaching is mediated by cognitive processes of the learner which are based on his or her activity ( Pozo et al., 2006 ; López-Íñiguez and Pozo, 2014 ; Martín et al., 2014 ; Pérez Echeverría, in press ). Other examples of this belief can be found in the technological-reproductive conception described by Strauss and Shilony (1994) , which is close to a naïve information processing theory.

Second, we must acknowledge that neither teachers’ beliefs nor their educational practices remain stable but vary according to the teaching contexts. As Ertmer et al. (2015) claim, beliefs are not unidimensional, but teachers assume them in varying degrees and with different types of relationships. The teacher’s beliefs seem to be organized in profiles that gather aspects of the different theories about teaching and whose activation depends on the contextual demands ( Tondeur et al., 2008a ; Bautista et al., 2010 ; López-Íñiguez et al., 2014 ; Ertmer et al., 2015 ).

Third, we consider that this multidimensionality of beliefs makes them very difficult to measure or evaluate ( Pajares, 1992 ( Schraw and Olafson, 2015 ; see also Ertmer et al., 2015 ; Pérez Echeverría and Pozo, in press ), so perhaps different studies are measuring different components. For example, many studies focus on explicit beliefs, or “what teachers believe to be true” for learning, and therefore evaluate more the general ideas about what ICT-based education should be. Usually, these statements tend to be relatively more favorable to the advantages mentioned above. In this paper, we have chosen to analyze teachers’ stated practices as a means of addressing specific beliefs about teaching.

In addition to beliefs, other variables have been identified that influence the use of ICTs such as gender, age, educational level, or subject curriculum, with results that are usually inconclusive. Thus, while Mathews and Guarino (2000) found that men were more inclined toward the use of ICTs than women, in other studies no differences were found ( Gorder, 2008 ; Law and Chow, 2008 ). Similarly, other studies ( van Braak et al., 2004 ; Suárez et al., 2012 ) concluded that there was an inverse relationship between the age of the teachers and their interest in ICT, but other studies did not confirm this conclusion ( Gorder, 2008 ; Law and Chow, 2008 ; Inan and Lowther, 2010 ). Finally, the teaching experience gives equally ambiguous results; some papers report a negative relationship ( Mathews and Guarino, 2000 ; Baek et al., 2008 ; Inan and Lowther, 2010 ) while others find no relationship ( Gorder, 2008 ).

The influence of factors like educational level or curriculum subjects has also been analyzed. The data seem to be more conclusive regarding educational level: teachers in secondary education have more favorable attitudes toward ICT than teachers of earlier levels ( Gorder, 2008 ; Vanderlinde et al., 2010 ). However, the data are not so conclusive regarding the influence of curriculum subjects ( Williams et al., 2000 ; Gorder, 2008 ; Vanderlinde et al., 2010 ).

Although it will take time to understand what has happened in teaching during these months, many studies and proposals have analyzed the use of ICT in distance education. We can classify them into three types of research. The first type of analyses has measured the impact of classroom closures on the education of students, many of them focusing on their effects on inequality or the way different countries have dealt with this crisis ( Crawford et al., 2020 ; Reimers and Schleicher, 2020 ; Zhang et al., 2020 ). Second, studies have aimed at proposing principles that should guide the use of ICT in the classroom ( Ferdig et al., 2020 ; Rapanta et al., 2020 ; Sangrà et al., 2020 ). The last ones, which are close to the aims of this study, are focused on how teachers have used ICT for the COVID-19 crisis. Some of these studies have carried out qualitative case analyses in different contexts, institutions ( Koçoğlu and Tekdal, 2020 ; Rasmitadila et al., 2020 ), and even countries ( Hall et al., 2020 ; Iivari et al., 2020 ). However, others have resorted to the use of questionnaires applied to larger samples to inquire about the teaching experience for confined education ( Devitt et al., 2020 ; Luengo and Manso, 2020 ; Tartavulea et al., 2020 ; Trujillo-Sáez et al., 2020 ). These studies have concluded the most common use by teachers was to upload materials to a platform ( Tartavulea et al., 2020 ); the most activities were teacher-centered ( Koçoğlu and Tekdal, 2020 ); or the more constructivist the teachers are, the more ICT use is reported for confined education ( Luengo and Manso, 2020 ).

However, despite these indications, there has been no study that analyzes the activities and uses of ICT in school during confinement. What learning have teachers prioritized in this period? Has it been more oriented toward verbal, procedural, or attitudinal learning? ( Pozo, in press ). Through what activities, either more constructive or reproductive, have these learnings been promoted? Have the ICT been used to assess the accumulation of information or the global competencies in its management? What variables prompt carrying out one type of activity or another? These are some questions that have guided our research and are reflected in the following specific objectives.

1. Identifying the frequency with which Spanish teachers of primary, and compulsory and non-compulsory secondary education carried out activities using ICT during the pandemic, and how some variables influence this frequency (gender, teaching experience, previous ICT use, educational level, and curriculum subjects).

2. Analyzing the type of learning (reproductive or teacher-centered vs. constructive or student-centered) promoted most frequently by these teachers, as well as the influence of the variables mentioned.

3. Analyzing the types of outcomes (verbal learning, procedural learning, or attitudinal learning), assessment, and social organization promoted by the ICT and the possible influence of the mentioned variables.

4. Investigating if different teaching profiles can be identified in the use of ICT, as well as their relationship with the variables studied.

Regarding objective 1, as the contradictory results reviewed in the Introduction showed, it is difficult to sustain a concrete hypothesis. However, in the case of objective 2, as argued in the Introduction, we expect to find a higher frequency of reproductive activities (or teacher-centered) than constructive (student-centered). Along the same lines, concerning the third objective, we hope to find more activities oriented to verbal learning, reproductive assessment, and individual organization of tasks, with few activities based on cooperation between students. Finally, about objective 4, we hope to identify teacher profiles that differ in the frequency and type of activities proposed to their students and that these profiles are related to some of the demographic variables analyzed in the study.

Materials and Methods

Task and procedure.

To achieve these objectives, we designed a questionnaire on ICT through the Qualtrics software and sent telematically to various networks of teachers and primary and secondary education centers in Spain. For the construction of the questionnaire, we consulted different blogs where teachers shared the activities they were applying during the pandemic. The questionnaire was composed of two parts. In the first one, after participants gave informed consent, they were requested to provide personal and professional information (see Table 2 ). The second part comprised 36 items that described different types of teaching activities. Participants were asked to rate how often they carried them out on a Likert scale (1, Never; 2 Some days per month; 3, Some days per week; and 4, Every day). After the analysis of the methodologies carried out in the Introduction, we considered asking teachers what they were doing in their classrooms was the most accurate procedure to know the true practices they were carrying out. On the one hand, we wanted to avoid the bias of classic questionaries on conceptions that require teachers to express their agreement with some beliefs. On the other hand, the analysis of teachers’ actual practices in their classrooms would require a different, more qualitative work, with a smaller sample size.

As we show in Table 1 , these activities were directed toward reproductive and constructive learning and different types of learning outcomes (verbal, procedural, and attitudinal), assessment (usually called summative and formative assessment), and cooperative activities.

www.frontiersin.org

Table 1. Structure and examples of questionnaire items.

www.frontiersin.org

Table 2. Characteristics of the sample and variables.

Participants

The participants were primary and secondary education teachers who were working in Spain when they completed the questionnaire. In Spain, compulsory education is from 6 to 16 years. In primary education (6–12 years), a single generalist teacher imparts most of the subjects, while specialist teachers (music, physical education, foreign language, etc.) only attend class during the hours of their subjects. After compulsory secondary education, there is a non-compulsory secondary education (16–18 years old) that is taught in the same centers as compulsory secondary education and by the same teachers.

We used directories of emails from public, private schools, and high schools of Spain to get in contact with the participants. Besides, to encourage participation, we raffled 75 euros for the purchase of teaching materials among all participants. We collected 1,541 answers. We eliminated 52 of them because they belonged to people who were not teachers of primary or secondary education in Spain. Then, we removed 45 participants who completed the questionnaire in less than 5 min, insufficient time to read and complete it, and we excluded 41 participants who indicated the 3rd (“Some days per week”) or 4th option (“Every day”) in over 80% of the items. We argue this exclusion as it is unlikely that a teacher could carry out such a quantity of activities in the span of a week. The questionnaire has 36 activities, so doing over 80% of items with a frequency of a minimum some days per week implies carrying out almost 29 activities per week. We consider this is not possible in the pertaining virtual class context and noted several contradictions in the answers. Therefore, the final sample had 1,403 teachers (see Table 2 ). Note that the sum of all variables does not reach this total because some values were so unusual that they were not considered in the statistical analyses.

Data Analysis

To ensure the consistency of the questionnaire and the dimensions, a reliability analysis was carried out using Cronbach’s Alpha coefficient. The reliability of the scale was 0.90, the reproductive and constructive scales obtained alphas above 0.75, and the verbal, procedural, attitudinal, assessment, and cooperation dimensions got alphas above 0.65.

The 1, 2, and 3 objectives were analyzed with one and two-factor ANOVA. These factors can be both repeated measures and completely randomized, according to the characteristics of the variable. Besides, we carried out post hoc analysis in which the Tukey or Bonferroni correction was applied depending on whether the ANOVA was 1 or 2 factors, to see the differences between categories in the ANOVA analyses. However, post hoc analyses were only performed on the ANOVA of the two factors when the interaction effects were significant.

Finally, a cluster analysis was implemented to identify different teaching profiles (objective 4). Once identified, we created contingency tables and their corresponding Corrected Typified Residuals (CTR) to know which variables were related to each profile. Finally, we carried out ANOVA to analyze the differences between profiles according to each of the designed dimensions. All the statistical analyses were carried out using SPPS version 26.

The results are written referring to what the teachers were doing to facilitate reading. However, in all cases, we refer to declared activities.

Frequency of Activities Carried Out

Regarding the first objective, teachers performed the activities between Some days per week and Some days per month on average ( M = 2.44, SD = 0.50). However, this frequency varied according to teaching experience, educational level, curriculum subject, and previous ICT use. Gender did not produce differences (see Table 3 ). In the case of teaching experience, according to the post hoc tests, teachers with intermediate experience (from 16 to 25 years) carried out a lower number of activities than novice teachers (5 years or fewer) ( p < 0.05). In turn, teachers who taught children between 6 and 9 years old were also less active than the rest ( p < 0.01). Within primary education, the generalists, who spend more time with the same students, proposed more activities than the specialists ( p < 0.01). In secondary education, the teachers of Spanish language were more active than those of mathematics and physical education ( p < 0.01). Finally, there seems to be a positive linear relationship between previous ICT use and the amount of activity for confined education ( F = 61.66, p < 0.001).

www.frontiersin.org

Table 3. Influence of personal and professional variables on the frequency of activities.

Teaching Activities: Reproductive or Constructive?

Nevertheless, we were not so much interested in the total amount of activities carried out as in the type of learning they promoted (reproductive or constructive). For this, we proposed objective 2. The data was overwhelming. They showed much greater use of reproductive ( M = 2.79, SD = 0.50) than constructive ( M = 2.16, SD = 0.60) learning activities ( F = 2,217.91, p < 0.001, η p 2 = 0.61). This is the largest and most robust effect size in this study; it occurs in all groups and for all variables ( p < 0.001), although to a different degree, as shown in Table 4 .

www.frontiersin.org

Table 4. Influence of the different variables on the type of activity.

Post hoc results reveal that novice teachers (5 years or fewer), the most active group according to the previous analysis, performed more reproductive activities than teachers with experience from 16 to 25 years ( p < 0.01), the least active one. However, the most experienced teachers (more than 25 years) executed more constructive activities than those with intermediate experience (from 16 to 25 years) ( p < 0.05). The teachers of children between 6 and 9 years old did less reproductive and constructive activities ( p < 0.05) than the rest of the groups, with significant differences in all cases except in the case of the teachers of non-compulsory secondary education, who stated less reproductive activities than they did.

In secondary education, the mathematics teachers did less constructive activities than those of Spanish language and social sciences ( p < 0.05). In turn, physical education teachers performed less reproductive activities than the rest of their classmates ( p < 0.01).

Finally, the higher the previous ICT the teachers used, the higher the frequencies indicated by them in both reproductive ( F = 33.57, p < 0.001) and constructive activities ( F = 61.61, p < 0.001). Notwithstanding, the size of the observed effect shows greater differences in the case of constructive activities (reproductive, F = 13.94, p < 0.001, η p 2 = 0.29, vs. constructive, F = 25.60, p < 0.001, η p 2 = 0.95).

Learning Outcomes, Assessment, and Cooperation Dimensions

The third objective was to determine what kind of learning outcomes resulted from the activities. As we show in Figure 1 , the teachers focused more on verbal and attitudinal learning than on procedural ( F = 100.11, p < 0.001, η p 2 = 0.07). On the other hand, the mean responses of the assessment tasks were similar to those of verbal learning and attitudinal learning, but the cooperative activities were less frequent than the remainder ( p < 0.001), performed between never and some days per month ( M = 1.78; SD = 0.74). However, as we see in Table 5 , these results are mediated by the effect of some variables.

www.frontiersin.org

Figure 1. Average of the frequencies of each type of activity.

www.frontiersin.org

Table 5. Influence of different variables on the frequency of activities for each dimension.

Post hoc analyses show that men carried out more activities focused on procedural learning than women ( p < 0.05), who in turn promoted more activities related to attitudinal learning ( p < 0.001). Men also carried out more cooperation activities than women ( p < 0.01), but there were no differences among them in the Assessment activities. However, the only effect related to teaching experience shows that less experienced teachers (5 years or fewer) carried out more assessment activities than teachers with intermediate experience (from 16 to 25 years) ( p < 0.05).

The teachers of the youngest children (6–9 years old) carried out more activities aimed at attitudinal learning ( p < 0.05) and fewer at procedural learning ( p < 0.01) than the rest of the teachers. Interestingly, the activities aimed at attitudinal learning decreased progressively when the educational level increased, with differences between the upper level of primary education (9–12 years) and secondary education ( p < 0.001). At the same time, the older the students were, the more verbal learning activities they performed, with differences between the first years of primary education (6–9 years) and secondary education (12–18) ( p < 0.05). Besides, the assessment and cooperation activities became more frequent as the educational levels advanced, with differences in both cases between the teachers of the first years of primary education ( p < 0.01) and the last years of primary education and non-compulsory secondary education ( p < 0.05).

In secondary education, verbal learning predominates in almost every subject. However, the Spanish language and foreign language teachers also carried out many activities aimed at attitudinal learning. Only in technology were more activities aimed at procedural learning executed compared to the others ( p < 0.05). At the same time, the mathematics teachers stand out for their little use of cooperation activities. To sum up, the activities aimed at verbal learning increase their frequency when the educational level increases, while attitudinal learning decreases. Nevertheless, the characteristics of each subject have some influence on the increases among educational levels. The cooperation activities also increase, although their frequency is still small. Finally, again, the higher the previous ICT use, the higher the frequency of all activities during the pandemic ( p < 0.001).

But all these differences become more meaningful when we look at the type of learning (reproductive or constructive) that is promoted by these activities. Again, as we see in Figure 2 , there is a considerable difference between the reproductive and constructive activities regardless of the dimension involved (see Table 6 ), a trend also confirmed by the low frequency of cooperation activities that, by their nature, promote constructive learning. It is remarkable that the highest differences between both scales happen in attitudinal learning. In fact, the most frequent activities in the questionnaire involved attitudinal reproductive learning.

www.frontiersin.org

Figure 2. Average of the reproductive and constructive activities in each dimension.

www.frontiersin.org

Table 6. Differences between reproductive and constructive activities in the dimensions.

Profiles of Teachers in the Use of ICT

Our final objective was to identify possible profiles in the use of ICT during confined education. For this purpose, we proceeded with a cluster analysis that allowed us to identify different teaching profiles as we showed in Figure 3 . After testing clusters of three centers in which the groups only differed in the number of activities, we executed a four centers cluster, which showed differences in the amount of activity ( F = 2,220.33, p < 0.001, η p 2 = 0.83) and the mean differences between reproductive and constructive activities ( F = 310.39, p < 0.001, η p 2 = 0.40).

www.frontiersin.org

Figure 3. Frequency of use of reproductive and constructive activities for each teachers’ profile.

• The first profile (“Passive”) was composed of 327 teachers who were characterized by a very low activity (MD = 0.63, SD = 0.02, p < 0.001), essentially reproductive ( M = 2.15, SD = 0.35) and scarcely constructive ( M = 1.52, SD = 0.29).

• The second profile (“Active”) was composed of 424 teachers, was the most numerous. It had a very similar pattern to the previous one, focused mainly on reproductive activities ( M = 2.82, SD = 0.33) rather than constructive ( M = 2.41, SD = 0.21) but with a higher level of activity ( MD = 0.41, SD = 0.02, p < 0.001).

• The third profile (“Reproductive”) was composed of 263 teachers with a similar level of activity to the previous one. However, they have a relatively higher frequency of reproductive activities ( M = 2.93, SD = 0.29) with hardly any constructive activities ( M = 1.82, SD = 0.24).

• The fourth profile (“Interpretative”) which was composed of 389 teachers, was corresponded to the most active teachers. This profile had the smallest differences between reproductive ( M = 3.32, SD = 0.29) and constructive activities ( M = 3.04, SD = 0.31), ( MD = 0.29, SD = 0.02, p < 0.001). According to the terminology used in the introduction, we have called it Interpretative because it integrated both types of activities.

Among the different profiles, we found systematic differences in the dimensions and types of learning. In fact, all differences among profiles were significant ( p < 0.01) except between the Active and Reproductive profiles in verbal, procedural, and attitudinal reproductive learning. There were also no differences between the Passive and Reproductive profiles in cooperative activities because of their low frequency in both groups. On the other hand, teachers in the Interpretive profile carried out more activities in all dimensions than the rest of the groups; the teachers of the Passive profile did fewer tasks than the others (except in the cases already indicated) and finally, the other two profiles maintained an intermediate level of activity, with the difference that the teachers of the Reproductive profile focused almost exclusively on reproductive activities as we see in Figure 4 .

www.frontiersin.org

Figure 4. Use of each dimension for each teachers’ profile.

The distribution of teachers in each of the four profiles varied depending on educational level (χ 2 = 29.57, p < 0.001), primary curriculum subjects (χ 2 = 60.97, p < 0.001), secondary curriculum subjects (χ 2 = 60.97, p < 0.001), and previous ICT use (χ 2 = 77.46, p < 0.001). We did not find any relationship with gender or teaching experience, the variables with the least influence in the study.

As we see in Table 7 , the first profile or Passive was over-represented by teachers of children aged 6–9, and teachers of non-compulsory secondary education were under-represented. Between the primary education teachers, specialists predominated, and there were practically no generalist teachers. The only secondary education teachers that appeared in this profile were physical education ones. Finally, there is a significant number of teachers who had not used ICT with their students before the confinement, and there was hardly any representation of those who had most used them.

www.frontiersin.org

Table 7. Variables related to each of the profiles.

The second or Active profile is distributed homogeneously way among the different educational levels. It is predominantly formed by secondary education teachers of Spanish language and social sciences. In the third or Reproductive profile, secondary education teachers who taught mathematics, and those who had never used ITC in the classroom were over-represented.

The fourth or Interpretative profile, characterized by integrating reproductive and constructive activities, had hardly any teachers of children from 6 to 9 years old nor specialist teachers of primary education, unlike the first profile. However, this profile included a high number of generalist teachers of primary education and Spanish language teachers of secondary education. On the other hand, it had a few mathematics teachers from secondary education who were over-represented in the Reproductive profile. Finally, the teachers who used ICT more before confinement were also over-represented, and there were hardly any teachers who had not used them.

Discussion and Conclusion

In this study, taking advantage of the critical incident caused by the COVID-19 pandemic, we analyzed the type of activities with ICT that primary and secondary education teachers proposed to their students. Our purpose was to check if, in this context, ICT contributed to promoting more constructive ways of teaching. The most dominant effect of the results, related to the second aim of the study, showed that teachers carried out significantly more activities oriented to reproductive learning than constructive ones. In other words, they preferred teacher-centered activities to student-centered ones. This effect was very robust ( F = 2,217.91, p < 0.001, η p 2 = 0.61), and it was manifested in all dimensions of the questionnaire, was maintained when we introduced any of the variables studied and was presented in all profiles.

On the other hand, our work has revealed other variables that influence the frequency of ICT use. Thus, we have found that teachers who attend to young children use them less than teachers of older students. These data coincide with those found in other works ( Gorder, 2008 ; Vanderlinde et al., 2010 ) and are probably related to the characteristics of the teaching activity itself. It is undoubtedly more arduous to use ICT in class with young children than with adolescents or adults. We have also found a greater frequency of use by generalists than specialists because the former teach more hours in the same class and consequently have more responsibilities with their students. Both the specialists and the teachers of the youngest children were overrepresented in the Passive profile. Nevertheless, the influence of the subjects taught in compulsory and non-compulsory secondary education is not so clear. We found there was hardly any influence of gender on different results. Data from other studies show that the influence of this variable is quite unstable and varies among studies ( Mathews and Guarino, 2000 ; Gorder, 2008 ; Law and Chow, 2008 ). However, teaching experience seems to influence in another way: whereas less experienced teachers are more reproductive, the more experienced teachers present fewer differences between reproductive and constructive activities. It should be noted that in other studies this variable has also shown ambiguous results ( Mathews and Guarino, 2000 ; Baek et al., 2008 ; Gorder, 2008 ; Inan and Lowther, 2010 ).

The third objective analyzed the learning outcomes that the activities provided, the type of assessment used, and the cooperation that activities promoted. In general, we have seen that teachers performed more verbal and attitudinal learning than procedural. However, in these cases (as well as in the assessment), activities were aimed at reproductive instead of constructive learning. The least frequent activities were cooperative (between never and some days per month), which is consistent with the importance given to reproduction. The salience of verbal learning increased as the higher the educational level was and, in the same way, the attitudinal activities decreased, with hardly any change in the procedural ones.

Considering that these data were collected in Spain when there were strict confinement and social isolation, we would emphasize that the activities related to attitudes were directed at maintaining classroom control in all groups and profiles (but outside the classroom) whereas there was much less frequency of activities focused on getting the ability to managing student attitudes, behavior or self-control during that situation of confinement. This difference suggests that teachers were more concerned about controlling their students’ study habits.

Regarding our fourth objective, we find four profiles of teachers (Passive, Active, Reproductive, and Interpretative). The first two differed only in the amount of total activity performed, while the Reproductive one was characterized by almost exclusively executing reproductive learning activities. Although, as in the previous groups, the Interpretative teachers carried out many reproductive activities, they also carried out constructive activities with considerable frequency. Teachers of children from 3 to 6 years, for whom engaging in the virtual activity is more complicated, abounded in the Passive profile. However, in the Reproductive profile, teachers of mathematics of secondary education predominated. In contrast, in the Interpretative profile, in which there were fewer differences between reproductive and constructive activities, generalists of primary education and teachers of social and natural sciences and Spanish language of secondary education were over-represented. But principally, this profile was over-represented by teachers who had previously used ICT.

In conclusion, it seems the teachers in this study use ICT essentially for presenting different kinds of information ( Tondeur et al., 2008b ) and do not use them as learning tools that help students to build, manage, and develop their knowledge. On the other hand, this study seems to show that teachers’ beliefs are much closer to the reproductive pole than to the constructive one. In this study, beliefs have been inferred through the frequency with which the teachers stated they carried out predetermined activities. In our view, the description of the activities was much closer to the actual practices and theories of the teachers than the results that questionnaires on beliefs could provide us with. For this reason, we expect the mismatch between theories and practices ( Liu, 2011 ; Fives and Buehl, 2012 ; Tsai and Chai, 2012 ; Mama and Hennessy, 2013 ; Ertmer et al., 2015 ; de Aldama and Pozo, 2016 ) was smaller and helped us to discover the true beliefs of teachers when they teach.

We could therefore conclude that, despite all the educational possibilities and all the promises of change in teaching that ICT raise ( Jaffee, 1997 ; Collins and Halverson, 2009 ), teachers have only perceived these tools as informative support. It seems the critical incident caused by the pandemic has not been resolved in the short-term with a change in favor of student-centered activities and content-centered ones continue predominating. Therefore, our data are more consistent with the results of some international mass studies ( Biagi and Loi, 2013 ; OECD, 2015 ) than with the experimental works that analyze how teachers who are previously chosen use ICT ( Tamim et al., 2011 ; Alrasheedi et al., 2015 ; Sung et al., 2015 ; Clark et al., 2016 ; Xie et al., 2018 ; Mayer, 2019 ). However, there is no doubt that the pandemic has contributed to familiarizing teachers with ICT. In our results, previous use of ICT was the variable that produced the most systematic differences in both the frequency of proposed reproductive and constructive activities. In this sense, perhaps the pandemic may have contributed to an increase in teachers’ experience in two of the three educational computer uses described by Tondeur et al. (2008a) : basic computer skills and use of computers as an information tool. Maybe, this fact could contribute in the future to using the third one, the use of ICT as learning tools. However, there are undoubtedly other variables related to first-order and second-order barriers (beliefs) or teacher training with ICT that influence this possibility of change.

In summary, our work shows that activities carried out through ICT during confined schooling were more teacher-centered than student-centered and hardly promoted the 21st-century skills, that digital technologies should facilitate ( Ertmer et al., 2015 ). However, the data also show that the greater the stated previous use of ICT, the greater and more constructive its use was reported for the pandemic. Previous use of ICTs is related not only to beliefs about their usefulness but also to specific training to master these tools and to use them in a versatile manner, adapted to different purposes or objectives. It seems clear that teacher training should be promoted not only to encourage more frequent use of ICT but also to change conceptions toward them to promote constructive learning. In this sense, the forced use of ICT because of COVID-19 will only encourage this change if we support teachers with adequate resources and activities which facilitate reflection on their use.

However, we should consider that one limitation of this study is that the practices analyzed were those declared by the teachers. It would be necessary to complete this study with an analysis of the practices that the teachers really applied and to analyze their relationship with their conceptions of learning and teaching. In fact, we are currently analyzing the actual practices of a sub-sample of the teachers who filled out the questionnaire, taking the profiles found in this work as the independent variable. In future research, it would be necessary to analyze the relationship between student learning and these different teaching practices.

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

The studies involving human participants were reviewed and approved by the Ethics Committee of the Autonomous University of Madrid. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

J-IP: funding acquisition, project administration, conceptualiza-tion, methodology, supervision, writing – original draft, and writing – review and editing. M-PE: funding acquisition, conceptualization, methodology, validation, writing – original draft, and writing – review and editing. BC: conceptualization, methodology, data curation, formal analysis, investigation, software, writing – original draft, writing – review and editing, and visualization. DLS: conceptualization, methodology, and writing – review and editing. All authors contributed to the article and approved the submitted version.

This work was supported by the Ministry of Innovation and Science of Spain (EDU2017-82243-C2-1-R).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank our colleagues from SEIACE for their participation in the item dimension task. We would also like to thank Ricardo Olmos for sharing his statistical knowledge with us. Finally, we would like to appreciate Krystyna Sleziaka her support with the translation of this paper.

Alrasheedi, M., Capretz, L. F., and Raza, A. (2015). A systematic review of the critical factors for success of mobile learning in higher education (University Students’ Perspective). J. Educ. Comput. Res. 52, 257–276. doi: 10.1177/0735633115571928

CrossRef Full Text | Google Scholar

Ananiadou, K., and Claro, M. (2009). 21st Century Skills and Competences for New Millennium Learners in OECD Countries. OECD Education Working Papers, 41. Paris: OECD Publishing. doi: 10.1787/218525261154

Bagshaw, E. (2016). The Reality is that Technology is Doing More Harm than Good in our Schools’ says Education Chief. North Sydney, NSW: Sydney Morning Herald.

Google Scholar

Baek, Y., Jung, J., and Kim, B. (2008). What makes teachers use technology in the classroom? Exploring the factors affecting facilitation of technology with a Korean sample. Comput. Educ. 50, 224–234. doi: 10.1016/j.compedu.2006.05.002

Biagi, F., and Loi, M. (2013). Measuring ICT use and learning outcomes: evidence from recent econometric studies. Eur. J. Educ. 48, 28–42. doi: 10.1111/ejed.12016

Bautista, A., Pérez Echeverría, M. P., and Pozo, J. I. (2010). Music performance teachers’ conceptions about learning and instruction: a descriptive study of Spanish piano teachers. Psychol. Music 38, 85–106. doi: 10.1177/0305735609336059

Bubb, S., and Jones, M. A. (2020). Learning from the COVID-19 home-schooling experience: listening to pupils, parents/carers and teachers. Improv. Sch. 23, 209–222. doi: 10.1177/1365480220958797

Butterfield, L. D., Borgen, W. A., Amundson, N. E., and Maglio, A.-S. T. (2005). Fifty years of the critical incident technique: 1954–2004 and beyond. Qual. Res. 5, 475–497. doi: 10.1177/1468794105056924

Clark, D. B., Tanner-Smith, E. E., and Killingsworth, S. S. (2016). Digital games, design, and learning: a systematic review and meta-analysis. Rev. Educ. Res. 86, 79–122. doi: 10.3102/0034654315582065

PubMed Abstract | CrossRef Full Text | Google Scholar

Colao, A., Piscitelli, P., Pulimeno, M., Colazzo, S., Miani, A., and Giannini, S. (2020). Rethinking the role of the school after COVID-19. Lancet Public Health 5:e370. doi: 10.1016/S2468-2667(20)30124-9

Collins, A., and Halverson, R. (2009). Rethinking Education in the Age of Digital Technology. New York, NY: Teacher’s College Press.

Comi, S. L., Argentin, G., Gui, M., Origo, F., and Pagani, L. (2017). Is it the way they use it? Teachers, ICT and student achievement. Econ. Educ. Rev. 56, 24–39. doi: 10.1016/j.econedurev.2016.11.007

Corcelles Seuba, M., and Castelló, M. (2015). Learning philosophical thinking through collaborative writing in secondary education. J. Writing Res. 7, 157–200. doi: 10.17239/jowr-2015.07.01.07

Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., et al. (2020). COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. J. Appl. Learn. Teach. 3, 9–28. doi: 10.37074/jalt.2020.3.1.7

de Aldama, C. (2020). Cognitive enhancement or cognitive diminishing? Digital technologies and challenges for education from a situated perspective. Límite Interdiscip. J. Philos. Psychol. 15:21.

de Aldama, C., and Pozo, J. I. (2016). How are ICT use in the classroom? A study of teachers’ beliefs and uses. Electron. J. Res. Educ. Psychol. 14, 253–286. doi: 10.14204/ejrep.39.15062

Devitt, A., Bray, A., Banks, J., and Ní Chorcora, E. (2020). Teaching and Learning During School Closures: Lessons Learned. Irish Second-Level Teacher Perspectives. Dublin: Trinity College Dublin

Dorn, E., Hancock, B., Sarakatsannis, J., and Viruleg, E. (2020). COVID-19 and Learning Loss—Disparities Grow and Students Need Help. Chicago, IL: McKinsey & Company.

Ertmer, P. A. (1999). Addressing first-and second-order barriers to change: strategies for technology integration. Educ. Technol. Res. Dev. 47, 47–61. doi: 10.1007/BF02299597

Ertmer, P. A. (2005). Teacher pedagogical beliefs: the final frontier in our quest for technology integration? Educ. Technol. Res. Dev. 53, 25–39. doi: 10.1007/BF02504683

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., and Sendurur, P. (2012). Teacher beliefs and technology integration practices: a critical relationship. Comput. Educ. 59, 423–435. doi: 10.1016/j.compedu.2012.02.001

Ertmer, P. A., Ottenbreit-Leftwich, A. T., and Tondeur, J. (2015). “Teachers’ beliefs and uses of technology to support 21st-century teaching and learning,” in International Handbook of Research on Teachers’ Beliefs , eds H. Fives and M. G. Gill (New York, NY: Routledge), 403–418.

Farías, M., Obilinovic, K., and Orrego, R. (2010). Modelos de aprendizaje multimodal y enseñanza-aprendizaj e de lenguas extranjeras [Models of multimodal learning and foreign language teaching-learning]. Univ. Tarraconensis 1, 55–74. doi: 10.17345/ute.2010.2.631

Ferdig, R. E., Baumgartner, E., Hartshorne, R., Kaplan-Rakowski, R., and Mouza, C. (2020). Teaching, Technology, and Teacher Education During the COVID-19 Pandemic: Stories from the Field. Waynesville, NC: Association for the Advancement of Computing in Education (AACE).

Fives, H., and Buehl, M. M. (2012). “Spring cleaning for the “messy” construct of teachers’ beliefs: What are they? Which have been examined? What can they tell us?,” in APA Educational Psychology handbook: Individual Differences and Cultural and Contextual Factors , Vol. 2, eds K. R. Harris, S. Graham, T. Urdan, S. Graham, J. M. Royer, and M. Zeidner (Washington, DC: American Psychological Association), 471–499. doi: 10.1037/13274-019

Fives H. and (Eds.) Gill M. G. (2015). International Handbook of Research on Teachers’ Beliefs. New York, NY: Routledge.

Fulton, K. (1997). The Skills Students Need for Technological Fluency. Santa Monica, CA: Milken Exchange on Education Technology.

Genlott, A. A., and Grönlund, Å (2016). Closing the gaps - Improving literacy and mathematics by ICT-enhanced collaboration. Comput. Educ. 99, 68–80. doi: 10.1016/j.compedu.2016.04.004

Gorder, L. M. (2008). A study of teacher perceptions of instructional technology integration in the classroom. Delta Pi Epsilon J. 50, 63–76.

Hall, T., Connolly, C., Ó Grádaigh, S., Burden, K., Kearney, M., Schuck, S., et al. (2020). Education in precarious times: a comparative study across six countries to identify design priorities for mobile learning in a pandemic. Inform. Learn. Sci. 121, 433–442. doi: 10.1108/ILS-04-2020-0089

Hennessy, S., Deaney, R., Ruthven, K., and Winterbottom, M. (2007). Pedagogical strategies for using the interactive whiteboard to foster learner participation in school science. Learn. Media Technol. 32, 283–301. doi: 10.1080/17439880701511131

Hermans, R., Tondeur, J., van Braak, J., and Valcke, M. (2008). The impact of primary school teachers’ educational beliefs on the classroom use of computers. Comput. Educ. 51, 1499–1509. doi: 10.1016/j.compedu.2008.02.001

Hofer, B. K., and Pintrich, P. R. (1997). The development of epistemological theories: beliefs about knowledge and knowing and their relation to learning. Rev. Educ. Res. 67, 88–140. doi: 10.3102/00346543067001088

Hofer, B. K., and Pintrich, P. R. (eds) (2002). Personal Epistemology: The Psychology of Beliefs about Knowledge and Knowing. Mahwah, NJ: L. Erlbaum Associates.

Iivari, N., Sharma, S., and Ventä-Olkkonen, L. (2020). Digital transformation of everyday life – How COVID-19 pandemic transformed the basic education of the young generation and why information management research should care? Int. J. Inform. Manag. 55:102183. doi: 10.1016/j.ijinfomgt.2020.102183

Inan, F. A., and Lowther, D. L. (2010). Factors affecting technology integration in K-12 classrooms: a path model. Educ. Technol. Res. Dev. 58, 137–154. doi: 10.1007/s11423-009-9132-y

Jaffee, D. (1997). Asynchronous learning: technology and pedagogical strategy in a distance learning course. Teach. Sociol. 25, 262–277. doi: 10.2307/1319295

Judson, E. (2006). How teachers integrate technology and their beliefs about learning: is there a connection? J. Technol. Teacher Educ. 14, 581–597.

Koçoğlu, E., and Tekdal, D. (2020). Analysis of distance education activities conducted during COVID-19 pandemic. Educ. Res. Rev. 15, 536–543. doi: 10.5897/ERR2020.4033

Law, N., and Chow, A. (2008). “Teacher characteristics, contextual factors, and how these affect the pedagogical use of ICT,” in Pedagogy and ICT use in Schools Around the World. Findings From the IEA SITES 2006 Study , eds N. Law, W. J. Pelgrum, and T. Plomp (Hong Kong: Springer).

Li, Q., and Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educ. Psychol. Rev. 22, 215–243. doi: 10.1007/s10648-010-9125-8

Liu, S.-H. (2011). Factors related to pedagogical beliefs of teachers and technology integration. Comput. Educ. 56, 1012–1022. doi: 10.1016/j.compedu.2010.12.001

López-Íñiguez, G., Pozo, J. I., and de Dios, M. J. (2014). The older, the wiser? Profiles of string instrument teachers with different experience according to their conceptions of teaching, learning, and evaluation. Psychol. Music 42, 157–176. doi: 10.1177/0305735612463772

López-Íñiguez, G., and Pozo, J. I. (2014). Like teacher, like student? Conceptions of children from traditional and constructive teaching models regarding the teaching and learning of string instruments. Cogn. Inst. 32, 219–252. doi: 10.1080/07370008.2014.918132

Loveless, A., and Dore, B. (2002). ICT in the Primary School. Buckingham: Open University Press.

Luengo, F., and Manso, J. (eds) (2020). Informe de Investigación COVID19. Voces de docentes y familias. [Report on COVID19 Investigation. Voices from Teachers and Families]. Madrid: Proyecto Atlántida.

Mama, M., and Hennessy, S. (2013). Developing a typology of teacher beliefs and practices concerning classroom use of ICT. Comput. Educ. 68, 380–387. doi: 10.1016/j.compedu.2013.05.022

Martín, E., Pozo, J. I., Mateos, M., Martín, A., and Pérez Echeverría, M. P. (2014). Infant, primary and secondary teachers’ conceptions of learning and teaching and their relation to educational variables. Rev. Latinoameric. Psicol. 46, 211–221. doi: 10.1016/S0120-0534(14)70024-X

Mathews, J. G., and Guarino, A. J. (2000). Predicting teacher computer use: a path analysis. Int. J. Inst. Media 27, 385–392.

Mayer, R. E. (2019). Computer games in education. Annu. Rev. Psychol. 70, 531–549. doi: 10.1146/annurev-psych-010418-102744

Monereo, C. (2010). La formación del profesorado: una pauta para el análisis e intervención a través de incidentes críticos. [Teacher education: a standard for analysis and intervention through critical incidents]. Rev. Iberoameric. Educ. 52, 149–178. doi: 10.35362/rie520615

Monereo, C., Monte, M., and Andreucci, P. (2015). La Gestión de Incidentes Críticos en la Universidad . [Management of critical incidents in university]. Madrid: Narcea.

OECD (2015). Students, Computers and Learning: Making the Connection. Paris: OECD Publishing. doi: 10.1787/9789264239555-en

OECD (2019). PISA 2018 results: What Students Know and Can do , Vol. I, Paris: OECD Publishing. doi: 10.1787/5f07c754-en

OECD (2020). How Prepared are Teachers and Schools to Face the Changes to Learning Caused by the Coronavirus Pandemic? Teaching in Focus 32 , Paris: OECD Publishing. doi: 10.1787/2fe27ad7-en

Pajares, M. F. (1992). Teachers’ beliefs and educational research: cleaning up a messy construct. Rev. Educ. Res. 62, 307–332. doi: 10.3102/00346543062003307

Pérez Echeverría, M. P. (in press). “How teachers and students conceive music education: towards changing mentalities,” in Learning and Teaching Music: A Student-Centered Approach , eds J. I. Pozo, M. P. Pérez-Echeverría, G. Torrado, and J. A. López-Íñiguez (Berlin: Springer).

Pérez Echeverría, M. P., Mateos, M., Scheuer, N., and Martín, E. (2006). “Enfoques en el estudio de las concepciones sobre el aprendizaje y la enseñanza. [Approaches for studying conceptions on learning and teaching],” in Nuevas formas de pensar la enseñanza y el aprendizaje: Las concepciones de profesores y alumnos , eds J. I. Pozo, N. Scheuer, M. P. Pérez Echeverría, M. Mateos, E. Martín, and M. de la Cruz (Barcelona: Graó), 55–94.

Pérez Echeverría, M. P., and Pozo, J. I. (in press). “How to know and analyse conceptions on learning and teaching,” in Learning and Teaching Music: A Student-Centered Approach , eds J. I. Pozo, M. P. Pérez Echeverría, G. López-Íñiguez, and J. A. Torrado (Berlin: Springer).

Pozo, J. I. (in press). “The psychology of music learning,” in Learning and Teaching Music: A Student-Centered Approach , eds J. I. Pozo, M. P. Pérez Echeverría, G. López-Íñiguez, and J. A. Torrado (Berlin: Springer).

Pozo, J. I., Scheuer, N., Pérez Echeverría, M. P., Mateos, M., Martín, E., and de la Cruz, M. (2006). Nuevas Formas de Pensar la Enseñanza y el Aprendizaje. Las Concepciones de Profesores y Alumnos. [New ways of Thinking about Teaching and Learning. Teachers’ and Student’s Conceptions]. Barcelona: Graó.

Rasmitadila, R., Aliyyah, R. R., Rachmadtullah, R., Samsudin, A., Syaodih, E., Nurtanto, M., et al. (2020). The perceptions of primary school teachers of online learning during the COVID-19 pandemic period: a case study in Indonesia. J. Ethnic Cult. Stud. 7, 90–109. doi: 10.29333/ejecs/388

Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., and Koole, M. (2020). Online university teaching during and after the Covid-19 crisis: refocusing teacher presence and learning activity. Postdigital Sci. Educ. 2, 923–945. doi: 10.1007/s42438-020-00155-y

Reimers, F. M., and Schleicher, A. (2020). A Framework to Guide an Education Response to the COVID-19 Pandemic of 2020. Paris: OECD Publishing.

Sangrà A. (ed.), Badia, A., Cabrera, N., Espasa, A., Fernández-Ferrer, M., Guàrdia, L., et al. (2020). Decálogo Para la Mejora de la Docencia Online. Propuestas Para Educar en Contextos Presenciales Discontinuos. [Decalogue for the Improvement of Online Teaching. Suggestions for Teaching in Intermittent Face-to-Face Contexts]. Barcelona: Editorial UOC.

Schraw, G., and Olafson, L. (2015). “Assessing teachers’ beliefs,” in International Handbook of Research on Teachers’ Beliefs , eds H. Fives and M. G. Gill (New York, NY: Routledge), 87–105.

Sigalés, C., Monimó, J. M., Meneses, J., and Badia, A. (2008). La Integración de Internet en la educación Escolar Española: Situación Actual y Perspectivas de Futuro. [Internet inclusion in Spanish School Education: Present Condition and Future perspectives]. Madrid: Fundación Telefónica.

Strauss, S., and Shilony, T. (1994). “Teachers’ models of children’s minds and learning,” in Mapping the Mind: Domain Specificity in Cognition and Culture , eds L. A. Hirschfeld and S. A. Gelman (Cambridge: Cambridge University Press), 455–473.

Suárez, J. M., Almerich, G., Orellana, N., and Belloch, C. (2012). El uso de las TIC por el profesorado no universitario. Modelo básico e influencia de factores personales y contextuales. [ICT use by non-university teachers. Basic model and the influence of personal and contextual factors]. Rev. Iberoameric. Eval. Educ. 5, 249–265.

Sung, Y.-T., Chang, K.-E., and Liu, T.-C. (2015). The effects of integrating mobile devices with teaching and learning on students’ learning performance: a meta-analysis and research synthesis. Comput. Educ. 94, 252–275. doi: 10.1016/j.compedu.2015.11.008

Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., and Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: a second-order meta-analysis and validation study. Rev. Educ. Res. 81, 4–28. doi: 10.3102/0034654310393361

Tartavulea, C. V., Albu, C. N., Albu, N., Dieaconescu, R. I., and Petre, S. (2020). Online teaching practices and the effectiveness of the educational process in the wake of the COVID-19 pandemic. Amfiteatru Econ. 22, 920–936. doi: 10.24818/EA/2020/55/920

Tondeur, J., Hermans, R., van Braak, J., and Valcke, M. (2008a). Exploring the link between teachers’ educational belief profiles and different types of computer use in the classroom. Comput. Hum. Behav. 24, 2541–2553. doi: 10.1016/j.chb.2008.02.020

Tondeur, J., Valcke, M., and van Braak, J. (2008b). A multidimensional approach to determinants of computer use in primary education: teacher and school characteristics. J. Comput. Assist. Learn. 24, 494–506. doi: 10.1111/j.1365-2729.2008.00285.x

Tondeur, J., van Braak, J., Ertmer, P. A., and Ottenbreit-Leftwich, A. T. (2017). Understanding the relationship between teachers’ pedagogical beliefs and technology use in education: a systematic review of qualitative evidence. Educ. Tech. Res. Dev. 65, 555–575. doi: 10.1007/s11423-016-9481-2

Tripp, D. (1993). Critical Incidents in Teaching: Developing Professional Judgement. New York, NY: Routledge.

Trujillo-Sáez, F., Fernández-Navas, M., Montes-Rodríguez, M., Segura-Robles, A., Alaminos-Romero, F. J., and Postigo-Fuentes, A. Y. (2020). Panorama de la Educación en España tras la pandemia de COVID-19: La Opinión de la Comunidad Educativa. [Outlook on Spanish Education After COVID-19 pandemic: The Opinion of the Educational Community]. Madrid: Fundación de Ayuda contra la Drogadicción (FAD). doi: 10.5281/zenodo-3878844

Tsai, C.-C., and Chai, C. S. (2012). The “third”-order barrier for technology-integration instruction: implications for teacher education. Aust. J. Educ. Technol. 28, 1057–1060. doi: 10.14742/ajet.810

van Braak, J., Tondeur, J., and Valcke, M. (2004). Explaining different types of computer use among primary school teachers. Eur. J. Psychol. Educ. 19:407. doi: 10.1007/BF03173218

Vanderlinde, R., van Braak, J., and Tondeur, J. (2010). Using an online tool to support school-based ICT policy planning in primary education. J. Comput. Assist. Learn. 26, 434–447. doi: 10.1111/j.1365-2729.2010.00358.x

Williams, D., Coles, L., Wilson, K., Richardson, A., and Tuson, J. (2000). Teachers and ICT: Current use and future needs. Br. J. Educ. Technol. 31, 307–320. doi: 10.1111/1467-8535.00164

Xie, H., Peng, J., Qin, M., Huang, X., Tian, F., and Zhou, Z. (2018). Can touchscreen devices be used to facilitate young children’s learning? A meta-analysis of touchscreen learning effect. Front. Psychol. 9:2580. doi: 10.3389/fpsyg.2018.02580

Zhang, W., Wang, Y., Yang, L., and Wang, C. (2020). Suspending classes without stopping learning: China’s education emergency management policy in the COVID-19 outbreak. J. Risk Finan. Manag. 13:55. doi: 10.3390/jrfm13030055

Keywords : digital technologies uses, constructive learning, reproductive learning, learning and teaching conceptions, learning outcomes, COVID-19

Citation: Pozo J-I, Pérez Echeverría M-P, Cabellos B and Sánchez DL (2021) Teaching and Learning in Times of COVID-19: Uses of Digital Technologies During School Lockdowns. Front. Psychol. 12:656776. doi: 10.3389/fpsyg.2021.656776

Received: 21 January 2021; Accepted: 07 April 2021; Published: 29 April 2021.

Reviewed by:

Copyright © 2021 Pozo, Pérez Echeverría, Cabellos and Sánchez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Juan-Ignacio Pozo, [email protected]

† These authors have contributed equally to this work and share first authorship

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

The COVID-19 pandemic has changed education forever. This is how 

Anais, a student at the International Bilingual School (EIB), attends her online lessons in her bedroom in Paris as a lockdown is imposed to slow the rate of the coronavirus disease (COVID-19) spread in France, March 20, 2020. Picture taken on March 20, 2020. REUTERS/Gonzalo Fuentes - RC2SPF9G7MJ9

With schools shut across the world, millions of children have had to adapt to new types of learning. Image:  REUTERS/Gonzalo Fuentes

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Cathy Li

Farah lalani.

essay on education during the time of pandemic

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} COVID-19 is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:.

  • The COVID-19 has resulted in schools shut all across the world. Globally, over 1.2 billion children are out of the classroom.
  • As a result, education has changed dramatically, with the distinctive rise of e-learning, whereby teaching is undertaken remotely and on digital platforms.
  • Research suggests that online learning has been shown to increase retention of information, and take less time, meaning the changes coronavirus have caused might be here to stay.

While countries are at different points in their COVID-19 infection rates, worldwide there are currently more than 1.2 billion children in 186 countries affected by school closures due to the pandemic. In Denmark, children up to the age of 11 are returning to nurseries and schools after initially closing on 12 March , but in South Korea students are responding to roll calls from their teachers online .

With this sudden shift away from the classroom in many parts of the globe, some are wondering whether the adoption of online learning will continue to persist post-pandemic, and how such a shift would impact the worldwide education market.

essay on education during the time of pandemic

Even before COVID-19, there was already high growth and adoption in education technology, with global edtech investments reaching US$18.66 billion in 2019 and the overall market for online education projected to reach $350 Billion by 2025 . Whether it is language apps , virtual tutoring , video conferencing tools, or online learning software , there has been a significant surge in usage since COVID-19.

How is the education sector responding to COVID-19?

In response to significant demand, many online learning platforms are offering free access to their services, including platforms like BYJU’S , a Bangalore-based educational technology and online tutoring firm founded in 2011, which is now the world’s most highly valued edtech company . Since announcing free live classes on its Think and Learn app, BYJU’s has seen a 200% increase in the number of new students using its product, according to Mrinal Mohit, the company's Chief Operating Officer.

Tencent classroom, meanwhile, has been used extensively since mid-February after the Chinese government instructed a quarter of a billion full-time students to resume their studies through online platforms. This resulted in the largest “online movement” in the history of education with approximately 730,000 , or 81% of K-12 students, attending classes via the Tencent K-12 Online School in Wuhan.

Have you read?

The future of jobs report 2023, how to follow the growth summit 2023.

Other companies are bolstering capabilities to provide a one-stop shop for teachers and students. For example, Lark, a Singapore-based collaboration suite initially developed by ByteDance as an internal tool to meet its own exponential growth, began offering teachers and students unlimited video conferencing time, auto-translation capabilities, real-time co-editing of project work, and smart calendar scheduling, amongst other features. To do so quickly and in a time of crisis, Lark ramped up its global server infrastructure and engineering capabilities to ensure reliable connectivity.

Alibaba’s distance learning solution, DingTalk, had to prepare for a similar influx: “To support large-scale remote work, the platform tapped Alibaba Cloud to deploy more than 100,000 new cloud servers in just two hours last month – setting a new record for rapid capacity expansion,” according to DingTalk CEO, Chen Hang.

Some school districts are forming unique partnerships, like the one between The Los Angeles Unified School District and PBS SoCal/KCET to offer local educational broadcasts, with separate channels focused on different ages, and a range of digital options. Media organizations such as the BBC are also powering virtual learning; Bitesize Daily , launched on 20 April, is offering 14 weeks of curriculum-based learning for kids across the UK with celebrities like Manchester City footballer Sergio Aguero teaching some of the content.

covid impact on education

What does this mean for the future of learning?

While some believe that the unplanned and rapid move to online learning – with no training, insufficient bandwidth, and little preparation – will result in a poor user experience that is unconducive to sustained growth, others believe that a new hybrid model of education will emerge, with significant benefits. “I believe that the integration of information technology in education will be further accelerated and that online education will eventually become an integral component of school education,“ says Wang Tao, Vice President of Tencent Cloud and Vice President of Tencent Education.

There have already been successful transitions amongst many universities. For example, Zhejiang University managed to get more than 5,000 courses online just two weeks into the transition using “DingTalk ZJU”. The Imperial College London started offering a course on the science of coronavirus, which is now the most enrolled class launched in 2020 on Coursera .

Many are already touting the benefits: Dr Amjad, a Professor at The University of Jordan who has been using Lark to teach his students says, “It has changed the way of teaching. It enables me to reach out to my students more efficiently and effectively through chat groups, video meetings, voting and also document sharing, especially during this pandemic. My students also find it is easier to communicate on Lark. I will stick to Lark even after coronavirus, I believe traditional offline learning and e-learning can go hand by hand."

These 3 charts show the global growth in online learning

The challenges of online learning.

There are, however, challenges to overcome. Some students without reliable internet access and/or technology struggle to participate in digital learning; this gap is seen across countries and between income brackets within countries. For example, whilst 95% of students in Switzerland, Norway, and Austria have a computer to use for their schoolwork, only 34% in Indonesia do, according to OECD data .

In the US, there is a significant gap between those from privileged and disadvantaged backgrounds: whilst virtually all 15-year-olds from a privileged background said they had a computer to work on, nearly 25% of those from disadvantaged backgrounds did not. While some schools and governments have been providing digital equipment to students in need, such as in New South Wales , Australia, many are still concerned that the pandemic will widenthe digital divide .

Is learning online as effective?

For those who do have access to the right technology, there is evidence that learning online can be more effective in a number of ways. Some research shows that on average, students retain 25-60% more material when learning online compared to only 8-10% in a classroom. This is mostly due to the students being able to learn faster online; e-learning requires 40-60% less time to learn than in a traditional classroom setting because students can learn at their own pace, going back and re-reading, skipping, or accelerating through concepts as they choose.

Nevertheless, the effectiveness of online learning varies amongst age groups. The general consensus on children, especially younger ones, is that a structured environment is required , because kids are more easily distracted. To get the full benefit of online learning, there needs to be a concerted effort to provide this structure and go beyond replicating a physical class/lecture through video capabilities, instead, using a range of collaboration tools and engagement methods that promote “inclusion, personalization and intelligence”, according to Dowson Tong, Senior Executive Vice President of Tencent and President of its Cloud and Smart Industries Group.

Since studies have shown that children extensively use their senses to learn, making learning fun and effective through use of technology is crucial, according to BYJU's Mrinal Mohit. “Over a period, we have observed that clever integration of games has demonstrated higher engagement and increased motivation towards learning especially among younger students, making them truly fall in love with learning”, he says.

A changing education imperative

It is clear that this pandemic has utterly disrupted an education system that many assert was already losing its relevance . In his book, 21 Lessons for the 21st Century , scholar Yuval Noah Harari outlines how schools continue to focus on traditional academic skills and rote learning , rather than on skills such as critical thinking and adaptability, which will be more important for success in the future. Could the move to online learning be the catalyst to create a new, more effective method of educating students? While some worry that the hasty nature of the transition online may have hindered this goal, others plan to make e-learning part of their ‘new normal’ after experiencing the benefits first-hand.

The importance of disseminating knowledge is highlighted through COVID-19

Major world events are often an inflection point for rapid innovation – a clear example is the rise of e-commerce post-SARS . While we have yet to see whether this will apply to e-learning post-COVID-19, it is one of the few sectors where investment has not dried up . What has been made clear through this pandemic is the importance of disseminating knowledge across borders, companies, and all parts of society. If online learning technology can play a role here, it is incumbent upon all of us to explore its full potential.

Our education system is losing relevance. Here's how to unleash its potential

3 ways the coronavirus pandemic could reshape education, celebrities are helping the uk's schoolchildren learn during lockdown, don't miss any update on this topic.

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

Related topics:

The agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} weekly.

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on COVID-19 .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

essay on education during the time of pandemic

Winding down COVAX – lessons learnt from delivering 2 billion COVID-19 vaccinations to lower-income countries

Charlotte Edmond

January 8, 2024

essay on education during the time of pandemic

Here’s what to know about the new COVID-19 Pirola variant

October 11, 2023

essay on education during the time of pandemic

How the cost of living crisis affects young people around the world

Douglas Broom

August 8, 2023

essay on education during the time of pandemic

From smallpox to COVID: the medical inventions that have seen off infectious diseases over the past century

Andrea Willige

May 11, 2023

essay on education during the time of pandemic

COVID-19 is no longer a global health emergency. Here's what it means

Simon Nicholas Williams

May 9, 2023

essay on education during the time of pandemic

New research shows the significant health harms of the pandemic 

Philip Clarke, Jack Pollard and Mara Violato

April 17, 2023

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

Zoom grid of five participants in Weatherhead Center panel on peacebuilding in the Middle East.

Finding middle way out of Gaza war

Salam Fayyad and Tarek Masoud.

Roadmap to Gaza peace may run through Oslo

Harvey C. Mansfield speaking

Why Democrats, Republicans, who appear at war these days, really need each other

Rubén Rodriguez/Unsplash

Time to fix American education with race-for-space resolve

Harvard Staff Writer

Paul Reville says COVID-19 school closures have turned a spotlight on inequities and other shortcomings

This is part of our Coronavirus Update series in which Harvard specialists in epidemiology, infectious disease, economics, politics, and other disciplines offer insights into what the latest developments in the COVID-19 outbreak may bring.

As former secretary of education for Massachusetts, Paul Reville is keenly aware of the financial and resource disparities between districts, schools, and individual students. The school closings due to coronavirus concerns have turned a spotlight on those problems and how they contribute to educational and income inequality in the nation. The Gazette talked to Reville, the Francis Keppel Professor of Practice of Educational Policy and Administration at Harvard Graduate School of Education , about the effects of the pandemic on schools and how the experience may inspire an overhaul of the American education system.

Paul Reville

GAZETTE: Schools around the country have closed due to the coronavirus pandemic. Do these massive school closures have any precedent in the history of the United States?

REVILLE: We’ve certainly had school closures in particular jurisdictions after a natural disaster, like in New Orleans after the hurricane. But on this scale? No, certainly not in my lifetime. There were substantial closings in many places during the 1918 Spanish Flu, some as long as four months, but not as widespread as those we’re seeing today. We’re in uncharted territory.

GAZETTE: What lessons did school districts around the country learn from school closures in New Orleans after Hurricane Katrina, and other similar school closings?

REVILLE:   I think the lessons we’ve learned are that it’s good [for school districts] to have a backup system, if they can afford it. I was talking recently with folks in a district in New Hampshire where, because of all the snow days they have in the wintertime, they had already developed a backup online learning system. That made the transition, in this period of school closure, a relatively easy one for them to undertake. They moved seamlessly to online instruction.

Most of our big systems don’t have this sort of backup. Now, however, we’re not only going to have to construct a backup to get through this crisis, but we’re going to have to develop new, permanent systems, redesigned to meet the needs which have been so glaringly exposed in this crisis. For example, we have always had large gaps in students’ learning opportunities after school, weekends, and in the summer. Disadvantaged students suffer the consequences of those gaps more than affluent children, who typically have lots of opportunities to fill in those gaps. I’m hoping that we can learn some things through this crisis about online delivery of not only instruction, but an array of opportunities for learning and support. In this way, we can make the most of the crisis to help redesign better systems of education and child development.

GAZETTE: Is that one of the silver linings of this public health crisis?

REVILLE: In politics we say, “Never lose the opportunity of a crisis.” And in this situation, we don’t simply want to frantically struggle to restore the status quo because the status quo wasn’t operating at an effective level and certainly wasn’t serving all of our children fairly. There are things we can learn in the messiness of adapting through this crisis, which has revealed profound disparities in children’s access to support and opportunities. We should be asking: How do we make our school, education, and child-development systems more individually responsive to the needs of our students? Why not construct a system that meets children where they are and gives them what they need inside and outside of school in order to be successful? Let’s take this opportunity to end the “one size fits all” factory model of education.

GAZETTE: How seriously are students going to be set back by not having formal instruction for at least two months, if not more?

“The best that can come of this is a new paradigm shift in terms of the way in which we look at education, because children’s well-being and success depend on more than just schooling,” Paul Reville said of the current situation. “We need to look holistically, at the entirety of children’s lives.”

Stephanie Mitchell/Harvard file photo

REVILLE: The first thing to consider is that it’s going to be a variable effect. We tend to regard our school systems uniformly, but actually schools are widely different in their operations and impact on children, just as our students themselves are very different from one another. Children come from very different backgrounds and have very different resources, opportunities, and support outside of school. Now that their entire learning lives, as well as their actual physical lives, are outside of school, those differences and disparities come into vivid view. Some students will be fine during this crisis because they’ll have high-quality learning opportunities, whether it’s formal schooling or informal homeschooling of some kind coupled with various enrichment opportunities. Conversely, other students won’t have access to anything of quality, and as a result will be at an enormous disadvantage. Generally speaking, the most economically challenged in our society will be the most vulnerable in this crisis, and the most advantaged are most likely to survive it without losing too much ground.

GAZETTE: Schools in Massachusetts are closed until May 4. Some people are saying they should remain closed through the end of the school year. What’s your take on this?

REVILLE: That should be a medically based judgment call that will be best made several weeks from now. If there’s evidence to suggest that students and teachers can safely return to school, then I’d say by all means. However, that seems unlikely.

GAZETTE: The digital divide between students has become apparent as schools have increasingly turned to online instruction. What can school systems do to address that gap?

REVILLE: Arguably, this is something that schools should have been doing a long time ago, opening up the whole frontier of out-of-school learning by virtue of making sure that all students have access to the technology and the internet they need in order to be connected in out-of-school hours. Students in certain school districts don’t have those affordances right now because often the school districts don’t have the budget to do this, but federal, state, and local taxpayers are starting to see the imperative for coming together to meet this need.

Twenty-first century learning absolutely requires technology and internet. We can’t leave this to chance or the accident of birth. All of our children should have the technology they need to learn outside of school. Some communities can take it for granted that their children will have such tools. Others who have been unable to afford to level the playing field are now finding ways to step up. Boston, for example, has bought 20,000 Chromebooks and is creating hotspots around the city where children and families can go to get internet access. That’s a great start but, in the long run, I think we can do better than that. At the same time, many communities still need help just to do what Boston has done for its students.

Communities and school districts are going to have to adapt to get students on a level playing field. Otherwise, many students will continue to be at a huge disadvantage. We can see this playing out now as our lower-income and more heterogeneous school districts struggle over whether to proceed with online instruction when not everyone can access it. Shutting down should not be an option. We have to find some middle ground, and that means the state and local school districts are going to have to act urgently and nimbly to fill in the gaps in technology and internet access.

GAZETTE : What can parents can do to help with the homeschooling of their children in the current crisis?

“In this situation, we don’t simply want to frantically struggle to restore the status quo because the status quo wasn’t operating at an effective level and certainly wasn’t serving all of our children fairly.”

More like this

U.S. map dotted with To Serve Better icons.

The collective effort

Jonathan Savilonis and sons Julius and Lysander with their LEGO model of Harvard's Music Building.

Notes from the new normal

Illustration of work-life balance.

‘If you remain mostly upright, you are doing it well enough’

REVILLE: School districts can be helpful by giving parents guidance about how to constructively use this time. The default in our education system is now homeschooling. Virtually all parents are doing some form of homeschooling, whether they want to or not. And the question is: What resources, support, or capacity do they have to do homeschooling effectively? A lot of parents are struggling with that.

And again, we have widely variable capacity in our families and school systems. Some families have parents home all day, while other parents have to go to work. Some school systems are doing online classes all day long, and the students are fully engaged and have lots of homework, and the parents don’t need to do much. In other cases, there is virtually nothing going on at the school level, and everything falls to the parents. In the meantime, lots of organizations are springing up, offering different kinds of resources such as handbooks and curriculum outlines, while many school systems are coming up with guidance documents to help parents create a positive learning environment in their homes by engaging children in challenging activities so they keep learning.

There are lots of creative things that can be done at home. But the challenge, of course, for parents is that they are contending with working from home, and in other cases, having to leave home to do their jobs. We have to be aware that families are facing myriad challenges right now. If we’re not careful, we risk overloading families. We have to strike a balance between what children need and what families can do, and how you maintain some kind of work-life balance in the home environment. Finally, we must recognize the equity issues in the forced overreliance on homeschooling so that we avoid further disadvantaging the already disadvantaged.

GAZETTE: What has been the biggest surprise for you thus far?

REVILLE: One that’s most striking to me is that because schools are closed, parents and the general public have become more aware than at any time in my memory of the inequities in children’s lives outside of school. Suddenly we see front-page coverage about food deficits, inadequate access to health and mental health, problems with housing stability, and access to educational technology and internet. Those of us in education know these problems have existed forever. What has happened is like a giant tidal wave that came and sucked the water off the ocean floor, revealing all these uncomfortable realities that had been beneath the water from time immemorial. This newfound public awareness of pervasive inequities, I hope, will create a sense of urgency in the public domain. We need to correct for these inequities in order for education to realize its ambitious goals. We need to redesign our systems of child development and education. The most obvious place to start for schools is working on equitable access to educational technology as a way to close the digital-learning gap.

GAZETTE: You’ve talked about some concrete changes that should be considered to level the playing field. But should we be thinking broadly about education in some new way?

REVILLE: The best that can come of this is a new paradigm shift in terms of the way in which we look at education, because children’s well-being and success depend on more than just schooling. We need to look holistically, at the entirety of children’s lives. In order for children to come to school ready to learn, they need a wide array of essential supports and opportunities outside of school. And we haven’t done a very good job of providing these. These education prerequisites go far beyond the purview of school systems, but rather are the responsibility of communities and society at large. In order to learn, children need equal access to health care, food, clean water, stable housing, and out-of-school enrichment opportunities, to name just a few preconditions. We have to reconceptualize the whole job of child development and education, and construct systems that meet children where they are and give them what they need, both inside and outside of school, in order for all of them to have a genuine opportunity to be successful.

Within this coronavirus crisis there is an opportunity to reshape American education. The only precedent in our field was when the Sputnik went up in 1957, and suddenly, Americans became very worried that their educational system wasn’t competitive with that of the Soviet Union. We felt vulnerable, like our defenses were down, like a nation at risk. And we decided to dramatically boost the involvement of the federal government in schooling and to increase and improve our scientific curriculum. We decided to look at education as an important factor in human capital development in this country. Again, in 1983, the report “Nation at Risk” warned of a similar risk: Our education system wasn’t up to the demands of a high-skills/high-knowledge economy.

We tried with our education reforms to build a 21st-century education system, but the results of that movement have been modest. We are still a nation at risk. We need another paradigm shift, where we look at our goals and aspirations for education, which are summed up in phrases like “No Child Left Behind,” “Every Student Succeeds,” and “All Means All,” and figure out how to build a system that has the capacity to deliver on that promise of equity and excellence in education for all of our students, and all means all. We’ve got that opportunity now. I hope we don’t fail to take advantage of it in a misguided rush to restore the status quo.

This interview has been condensed and edited for length and clarity.

Share this article

You might like.

Educators, activists explore peacebuilding based on shared desires for ‘freedom and equality and independence’ at Weatherhead panel

Salam Fayyad and Tarek Masoud.

Former Palestinian Authority prime minister says strengthening execution of 1993 accords could lead to two-state solution 

Harvey C. Mansfield speaking

Political philosopher Harvey C. Mansfield says it all goes back to Aristotle, balance of competing ideas about common good

College accepts 1,937 to Class of 2028

Students represent 94 countries, all 50 states

Pushing back on DEI ‘orthodoxy’

Panelists support diversity efforts but worry that current model is too narrow, denying institutions the benefit of other voices, ideas

So what exactly makes Taylor Swift so great?

Experts weigh in on pop superstar's cultural and financial impact as her tours and albums continue to break records.

What Life Was Like for Students in the Pandemic Year

essay on education during the time of pandemic

  • Share article

In this video, Navajo student Miles Johnson shares how he experienced the stress and anxiety of schools shutting down last year. Miles’ teacher shared his experience and those of her other students in a recent piece for Education Week. In these short essays below, teacher Claire Marie Grogan’s 11th grade students at Oceanside High School on Long Island, N.Y., describe their pandemic experiences. Their writings have been slightly edited for clarity. Read Grogan’s essay .

“Hours Staring at Tiny Boxes on the Screen”

By Kimberly Polacco, 16

I stare at my blank computer screen, trying to find the motivation to turn it on, but my finger flinches every time it hovers near the button. I instead open my curtains. It is raining outside, but it does not matter, I will not be going out there for the rest of the day. The sound of pounding raindrops contributes to my headache enough to make me turn on my computer in hopes that it will give me something to drown out the noise. But as soon as I open it up, I feel the weight of the world crash upon my shoulders.

Each 42-minute period drags on by. I spend hours upon hours staring at tiny boxes on a screen, one of which my exhausted face occupies, and attempt to retain concepts that have been presented to me through this device. By the time I have the freedom of pressing the “leave” button on my last Google Meet of the day, my eyes are heavy and my legs feel like mush from having not left my bed since I woke up.

Tomorrow arrives, except this time here I am inside of a school building, interacting with my first period teacher face to face. We talk about our favorite movies and TV shows to stream as other kids pile into the classroom. With each passing period I accumulate more and more of these tiny meaningless conversations everywhere I go with both teachers and students. They may not seem like much, but to me they are everything because I know that the next time I am expected to report to school, I will be trapped in the bubble of my room counting down the hours until I can sit down in my freshly sanitized wooden desk again.

“My Only Parent Essentially on Her Death Bed”

By Nick Ingargiola, 16

My mom had COVID-19 for ten weeks. She got sick during the first month school buildings were shut. The difficulty of navigating an online classroom was already overwhelming, and when mixed with my only parent essentially on her death bed, it made it unbearable. Focusing on schoolwork was impossible, and watching my mother struggle to lift up her arm broke my heart.

My mom has been through her fair share of diseases from pancreatic cancer to seizures and even as far as a stroke that paralyzed her entire left side. It is safe to say she has been through a lot. The craziest part is you would never know it. She is the strongest and most positive person I’ve ever met. COVID hit her hard. Although I have watched her go through life and death multiple times, I have never seen her so physically and mentally drained.

I initially was overjoyed to complete my school year in the comfort of my own home, but once my mom got sick, I couldn’t handle it. No one knows what it’s like to pretend like everything is OK until they are forced to. I would wake up at 8 after staying up until 5 in the morning pondering the possibility of losing my mother. She was all I had. I was forced to turn my camera on and float in the fake reality of being fine although I wasn’t. The teachers tried to keep the class engaged by obligating the students to participate. This was dreadful. I didn’t want to talk. I had to hide the distress in my voice. If only the teachers understood what I was going through. I was hesitant because I didn’t want everyone to know that the virus that was infecting and killing millions was knocking on my front door.

After my online classes, I was required to finish an immense amount of homework while simultaneously hiding my sadness so that my mom wouldn’t worry about me. She was already going through a lot. There was no reason to add me to her list of worries. I wasn’t even able to give her a hug. All I could do was watch.

“The Way of Staying Sane”

By Lynda Feustel, 16

Entering year two of the pandemic is strange. It barely seems a day since last March, but it also seems like a lifetime. As an only child and introvert, shutting down my world was initially simple and relatively easy. My friends and I had been super busy with the school play, and while I was sad about it being canceled, I was struggling a lot during that show and desperately needed some time off.

As March turned to April, virtual school began, and being alone really set in. I missed my friends and us being together. The isolation felt real with just my parents and me, even as we spent time together. My friends and I began meeting on Facetime every night to watch TV and just be together in some way. We laughed at insane jokes we made and had homework and therapy sessions over Facetime and grew closer through digital and literal walls.

The summer passed with in-person events together, and the virus faded into the background for a little while. We went to the track and the beach and hung out in people’s backyards.

Then school came for us in a more nasty way than usual. In hybrid school we were separated. People had jobs, sports, activities, and quarantines. Teachers piled on work, and the virus grew more present again. The group text put out hundreds of messages a day while the Facetimes came to a grinding halt, and meeting in person as a group became more of a rarity. Being together on video and in person was the way of staying sane.

In a way I am in a similar place to last year, working and looking for some change as we enter the second year of this mess.

“In History Class, Reports of Heightening Cases”

By Vivian Rose, 16

I remember the moment my freshman year English teacher told me about the young writers’ conference at Bread Loaf during my sophomore year. At first, I didn’t want to apply, the deadline had passed, but for some strange reason, the directors of the program extended it another week. It felt like it was meant to be. It was in Vermont in the last week of May when the flowers have awakened and the sun is warm.

I submitted my work, and two weeks later I got an email of my acceptance. I screamed at the top of my lungs in the empty house; everyone was out, so I was left alone to celebrate my small victory. It was rare for them to admit sophomores. Usually they accept submissions only from juniors and seniors.

That was the first week of February 2020. All of a sudden, there was some talk about this strange virus coming from China. We thought nothing of it. Every night, I would fall asleep smiling, knowing that I would be able to go to the exact conference that Robert Frost attended for 42 years.

Then, as if overnight, it seemed the virus had swung its hand and had gripped parts of the country. Every newscast was about the disease. Every day in history, we would look at the reports of heightening cases and joke around that this could never become a threat as big as Dr. Fauci was proposing. Then, March 13th came around--it was the last day before the world seemed to shut down. Just like that, Bread Loaf would vanish from my grasp.

“One Day Every Day Won’t Be As Terrible”

By Nick Wollweber, 17

COVID created personal problems for everyone, some more serious than others, but everyone had a struggle.

As the COVID lock-down took hold, the main thing weighing on my mind was my oldest brother, Joe, who passed away in January 2019 unexpectedly in his sleep. Losing my brother was a complete gut punch and reality check for me at 14 and 15 years old. 2019 was a year of struggle, darkness, sadness, frustration. I didn’t want to learn after my brother had passed, but I had to in order to move forward and find my new normal.

Routine and always having things to do and places to go is what let me cope in the year after Joe died. Then COVID came and gave me the option to let up and let down my guard. I struggled with not wanting to take care of personal hygiene. That was the beginning of an underlying mental problem where I wouldn’t do things that were necessary for everyday life.

My “coping routine” that got me through every day and week the year before was gone. COVID wasn’t beneficial to me, but it did bring out the true nature of my mental struggles and put a name to it. Since COVID, I have been diagnosed with severe depression and anxiety. I began taking antidepressants and going to therapy a lot more.

COVID made me realize that I’m not happy with who I am and that I needed to change. I’m still not happy with who I am. I struggle every day, but I am working towards a goal that one day every day won’t be as terrible.

Coverage of social and emotional learning is supported in part by a grant from the NoVo Foundation, at www.novofoundation.org . Education Week retains sole editorial control over the content of this coverage. A version of this article appeared in the March 31, 2021 edition of Education Week as What Life Was Like for Students in the Pandemic Year

Teacher and student a world apart

Sign Up for The Savvy Principal

Edweek top school jobs.

Illustration of hands interacting with smartphones

Sign Up & Sign In

module image 9

News from the Columbia Climate School

Personal Reflections on Education During the Pandemic

Steve Cohen

I have a number of jobs at Columbia University: I teach professionally-oriented graduate students; I direct two master’s programs and one concentration in environmental sustainability policy and management and for the past two years I’ve served as senior vice dean of Columbia’s School of Professional Studies. While I’ve taken time out for government service and consulting, for the past four decades I’ve mainly been an educator, teaching while managing programs, schools and even a research institute. In all that time, I’ve never seen anything like the months since March 2020. It has been challenging, difficult, sad and at times, oddly rewarding.

Teaching in cyber-space and in what we call hyflex has been a technical and pedagogical challenge. In hyflex, we teach from a classroom with a skilled student video-aid operating a TV camera. The students include socially distant, masked students in the classroom along with students Zooming in from home. All sessions are taped and preserved on the course website. The new format created real challenges to teaching: How do I communicate to people in two dimensions who look like contestants on a game show? How do I combine classroom with distant instruction and dialogue? I teach case-based courses that require two-way communication. In fact, when we teach face-to-face, we prefer case classrooms where the seating is in a semi-circle so students can see each other. How do I encourage participation and ensure that students remain engaged? Student presentations and Zoom breakout rooms provided some opportunities for student involvement. For students in different time zones, I set up half-hour discussion sections where I addressed questions and tried to connect to those students who typically viewed the class via videotape. My class in Sustainability Management had about 80 students and encouraging dialogue can often be difficult, but this year it often felt like we were in uncharted waters. We all did our best, but it was definitely a challenge for everyone.

In the environmental management simulation workshop I teach, the class is much smaller, and my engagement with the group was easier since everyone could see each other on a single Zoom screen. Just as I miss social engagement with friends, colleagues and family, I missed that in this class, but the sense of mission and generosity of spirit I felt from my students made the experience particularly profound. Compliments in the chat box after student presentations and smiles and visible manifestations of teamwork were common. In the fall, when we shifted from all virtual to hyflex, a few students came into the classroom most weeks and it was great to see them walk out together connecting (masked) in real-time and space.

One of the most interesting aspects of my courses this past summer and fall were that students performed as well or better than students in past semesters. I know that students in K-12 education had less positive learning outcomes, but graduate professional education has a different dynamic. I think students were grateful for the sense of structure and purpose they found in continuing their education, and the classes were in some way a method of breaking up the monotony of pandemic life. Without the distraction of New York City’s night life and dynamism, they seemed to spend more time on coursework. Some, of course, seemed and likely were depressed, but the sense of mutual support and caring practically jumped off the screen with regular frequency. Students went the extra mile to be mutually supportive and that was wonderful beyond words.

This is not to say that I prefer this form of teaching and learning. I don’t. But I know that it is demonstrating our resilience and creativity and I believe that learning how to use this technology will have a long-term, positive impact on teaching and learning. I give enormous credit to the technical assistance staff at Columbia, who supported my teaching and to the people who developed Zoom, an application so simple even I could figure it out. Assuming I remain healthy, I will look back on this time as a type of battle that we waged to continue staying positive despite the pain and suffering that enveloped us constantly. I suppose new terms like: “I’ll share my screen” and “you’re muted” are now permanent additions to our language.

My experience as a teacher influenced the way I’ve tried to provide leadership as an educational administrator. In a time of incredible abnormality, I thought it vital to provide a sense of normalcy and purpose. At Columbia, the School of Professional Studies manages the summer session, and when we moved to online education last March, we quickly decided to move the summer session online as well. Amy Hungerford, our new dean and vice president for Arts and Sciences convened a working group of senior administrators from her office and from most of the undergraduate and graduate schools in the Arts and Sciences to plan a high quality and exciting online summer session. Her leadership resulted in a team effort unlike any I had ever experienced before at Columbia. Working together, we created a summer session that had more enrollments than any summer session had before. Our high school program enrolled over 1,000 more students than the summer before, and both graduate and undergraduate enrollments increased over previous summers. We had originally projected significant drops in enrollment, but we were proven wrong. In retrospect, I realized that many normal summer activities like travel, camp and field-based internships, were impossible and so, a high-quality educational experience seemed like a reasonable thing to do.

Unfortunately, the picture changed as we entered the fall semester. Our biggest problem was that international students could not get visas to travel to New York because embassies stopped issuing them. In addition, there were travel restrictions related to health concerns. At the School of Professional Studies, nearly 1,800 students had sent deposits committing them to begin in one of our 17 master’s programs in the fall, but over 600 of them (mainly international) asked to defer admission until January or September 2021. But there were bright spots despite that setback. We were able to launch an online weekend high school program this fall that enrolled about 700 students, and commitments for graduate study in January are now higher than they were last year at this time. Interestingly, over 200 of the 300 students who had deferred until January have recommitted and plan to begin next semester.

My analysis of all of this is that education provides people with a sense of normalcy and forward progress even during the horrific time we are now enduring. The socialization aspects of higher education are very important, and its absence is very real and a huge cost of the pandemic. We have learned that for young children, the need for face-to-face education is far greater than for older students. It is not trivial for graduate students, but for a few semesters, we can operate this way. For my three-year-old granddaughter, it is a different story and her parents have resumed her attendance in pre-school. But as the disease spikes again in New York, and with indoor dining closing again here in the city, we need to be prepared for a second lockdown like the one we had last spring.

I now know we can teach and learn in this environment, but I worry that everyone is getting a little screen weary. Time is less distinct than it once was. Weekends do not revolve around social engagements and are mainly recognizable by the absence of Zoom meetings. My friends who teach younger students are concerned about the ability of their students to learn in this environment. I understand that, but for graduate students, the formal part of their education is succeeding. The work I am seeing is spectacular. But I am certain the informal part of education is suffering. I always say that in graduate school I learned more from my classmates in bars and cafes than I ever learned in classrooms. In some way, the classes were just the excuse for the transformational educational experience I was enjoying. And so, I am happy for what we have accomplished, but I long for what we’ve lost. Like everyone else, I am eager for the vaccine to be distributed and for the infection rate to go down so we can all exhale and return to the real world. A world I know I will never again take for granted.

Related Posts

Tackling Crowd Management in Subways During Pandemics

Tackling Crowd Management in Subways During Pandemics

Two Years Into COVID-19, the City That Never Sleeps Returns to Waking Up Early

Two Years Into COVID-19, the City That Never Sleeps Returns to Waking Up Early

Graduation Ceremonies Return to the Real World

Graduation Ceremonies Return to the Real World

Science for the Planet: In these short video explainers, discover how scientists and scholars across the Columbia Climate School are working to understand the effects of climate change and help solve the crisis.

I manage a few different websites and forums related to education and parenting, and I can tell you that people are hurting – badly. I totally agree that another lockdown is coming, but I very much hope this vaccine can work wonders.

Get the Columbia Climate School Newsletter →

University of Utah Logo

  • Media Contacts
  • News Releases
  • Article Submissions
  • All Categories
  • Arts & Humanities
  • Campus Life
  • Equity & Diversity
  • Health & Medicine
  • Humans of the U
  • Law & Politics
  • Science & Technology
  • Sustainability
  • University Statements
  • Announcements
  • Submit an event
  • U Rising Podcast
  • About the U

Powered By Google Search

Education during a pandemic

This piece originally appeared in Education Week here .

COVID-19 has made it more obvious that the public school system cannot fulfill its mission without families. This pandemic—along with the many overlapping pandemics our nation now faces, including racial, economic, political and environmental injustices—has also heightened existing barriers between families and schools.

For the past few years, we at the Family-School Collaboration Design Research Project—the community research partnership facilitated by the University of Utah, of which all the authors of this essay are a part—have been working with teachers, administrators and culturally diverse families in Salt Lake City to design new ways of increasing family voice in schools. When we recognized the increased disconnection between families and educators during COVID-19, we asked them to share experiences, hopes, frustrations and needs in recorded Zoom videos . In those videos, families and educators taught us how COVID-19 is straining their relationships. This reality challenged us to think creatively about school and family engagement.

The coronavirus pandemic has magnified deep-rooted racial and social injustices and perpetuated educational inequities. With the shift to online teaching, the  digital divide has become a chasm , separating those who have access to school learning and those who don’t. Families in our project, like so many other Americans, described struggling to figure out new technology in a new language with only one computer for multiple children and unreliable or nonexistent internet access. Meanwhile, the pandemic has left many families with multiple crises—food and home insecurities, loss of work, illness— which compete for time and resources with school. These crises are disproportionately harming historically marginalized groups, including families of Black, Indigenous, immigrant and refugee backgrounds like those in our project.

We know from decades of research that genuine, reciprocal, trusting relationships are the foundation on which educators and families can overcome educational obstacles.

And it is clear that educators and families want to be more connected. As Evelia, a parent, said in her Zoom video message to schools: “Include me in my child’s education. [We need] parents, students, and teachers working together to establish routines, communication and discipline.” Victoria, a teacher explained, “I am looking to my school and my district to come out with a consistent plan that helps support students, families, and educators and allows us to build those meaningful relationships that are going to create good learning opportunities that will support our students through this school year.”

Historically, family involvement has been defined narrowly, judged mainly by the physical presence of families in schools—which is impossible during a shutdown. The education profession has rarely asked families how they define “engagement” (or “family”) and consistently devalues many less visible ways that families support education at home and in the community, such as passing along cultural norms and building educational passion through real-world experiences. Overall, engagement has been marred by broken trust, racial bias, and educators’ cultural assumptions about what a “good” family does.

Re-envisioning this dynamic requires centering the families traditionally left out by those cultural assumptions. COVID-19 can be a catalyst for us to jettison old, school-centered ways of doing things that haven’t worked well. Below are some recommendations based on what we learned through our project and through decades of working with families and schools.

We are mindful that COVID-19 has brought many uncertainties, including budget cuts that have resulted in the loss of nearly  500,000 public education jobs  in April of this year alone. However, we encourage districts to prioritize genuine relationships with all families whenever possible. Here’s what that looks like:

Support paid time to connect with families. While budget cuts may make paying overtime infeasible, districts should work to carve out paid time for teachers to call, text, Zoom and (when necessary) meet with families to check-in. The most important goal is to keep communication with families open and for educators to understand the realities families are facing.

Have staff dedicated to leading schoolwide family engagement.  Family engagement is everyone’s responsibility, not just an expectation of individual teachers. When possible, hire and support people who can connect across racial, cultural, and linguistic divides, such as bilingual individuals with roots in local communities.

Construct family leadership and decision-making roles.  We are not going to figure out COVID-19-era education without the knowledge and expertise of the families most impacted. Learn about the assets your families have and welcome their contributions to this joint effort.

Look for new spaces to engage families.  With schools closed, this is a perfect time to get away from the school building and into community spaces for parent-teacher meetings or even “classroom” instruction, while still addressing the reality of the pandemic. As Rebecca, a teacher, put it, “A classroom can be a play area in an apartment complex, it can be in a parking lot of a library.”

Invest in family members as coeducators.  Many families do not feel ready to take on the added teaching responsibilities they have been given. Umu, a parent, explained, “I think to home school a kid, you have to equip the parents first before coming to the child.” Offer materials, workshops, or one-on-one support to families so they can build confidence in this new role.

Work with community partners. Rebecca explained that “I, alone, as a teacher do not have the skills and the strengths to go ahead and diminish all of these barriers” that students face. Addressing the racial and social inequities heightened by the pandemic requires working closely with local community organizations, agencies, businesses, and community leaders—some of whom will be family members in the school.

Offer professional development. Teachers, staff and administrators need more training on anti-racism and how to build authentic, equitable relationships with multilingual families of all backgrounds.

These commitments will create the foundation we need for families and educators to confront the new challenges of distance learning in a time of pandemic. It is imperative that we as a nation make education a priority and support the educational success of our children by investing in these essential commitments. When this particular crisis has passed, we cannot return to normal. The inequities magnified by COVID-19 will persist and must be addressed.

RELATED ARTICLES

Animals of the u: fox a. squirrel, animals of the u: zippy the zebrafish, animals of the u: baloo, the assistant to assistant professor sara malik, university of utah launches peak water sustainability engine, u extending enrollment deposit deadline to june 3 due to fafsa complications, day of collective action highlights hbcu partnerships, nature physics spotlights future of physics education, u officers learn latest methods for trauma-informed investigations, explore the human condition with great books.

  • Share full article

Advertisement

Supported by

What the Data Says About Pandemic School Closures, Four Years Later

The more time students spent in remote instruction, the further they fell behind. And, experts say, extended closures did little to stop the spread of Covid.

Sarah Mervosh

By Sarah Mervosh ,  Claire Cain Miller and Francesca Paris

Four years ago this month, schools nationwide began to shut down, igniting one of the most polarizing and partisan debates of the pandemic.

Some schools, often in Republican-led states and rural areas, reopened by fall 2020. Others, typically in large cities and states led by Democrats, would not fully reopen for another year.

A variety of data — about children’s academic outcomes and about the spread of Covid-19 — has accumulated in the time since. Today, there is broad acknowledgment among many public health and education experts that extended school closures did not significantly stop the spread of Covid, while the academic harms for children have been large and long-lasting.

While poverty and other factors also played a role, remote learning was a key driver of academic declines during the pandemic, research shows — a finding that held true across income levels.

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the COVID-19 Pandemic .” Score changes are measured from 2019 to 2022. In-person means a district offered traditional in-person learning, even if not all students were in-person.

“There’s fairly good consensus that, in general, as a society, we probably kept kids out of school longer than we should have,” said Dr. Sean O’Leary, a pediatric infectious disease specialist who helped write guidance for the American Academy of Pediatrics, which recommended in June 2020 that schools reopen with safety measures in place.

There were no easy decisions at the time. Officials had to weigh the risks of an emerging virus against the academic and mental health consequences of closing schools. And even schools that reopened quickly, by the fall of 2020, have seen lasting effects.

But as experts plan for the next public health emergency, whatever it may be, a growing body of research shows that pandemic school closures came at a steep cost to students.

The longer schools were closed, the more students fell behind.

At the state level, more time spent in remote or hybrid instruction in the 2020-21 school year was associated with larger drops in test scores, according to a New York Times analysis of school closure data and results from the National Assessment of Educational Progress , an authoritative exam administered to a national sample of fourth- and eighth-grade students.

At the school district level, that finding also holds, according to an analysis of test scores from third through eighth grade in thousands of U.S. districts, led by researchers at Stanford and Harvard. In districts where students spent most of the 2020-21 school year learning remotely, they fell more than half a grade behind in math on average, while in districts that spent most of the year in person they lost just over a third of a grade.

( A separate study of nearly 10,000 schools found similar results.)

Such losses can be hard to overcome, without significant interventions. The most recent test scores, from spring 2023, show that students, overall, are not caught up from their pandemic losses , with larger gaps remaining among students that lost the most ground to begin with. Students in districts that were remote or hybrid the longest — at least 90 percent of the 2020-21 school year — still had almost double the ground to make up compared with students in districts that allowed students back for most of the year.

Some time in person was better than no time.

As districts shifted toward in-person learning as the year went on, students that were offered a hybrid schedule (a few hours or days a week in person, with the rest online) did better, on average, than those in places where school was fully remote, but worse than those in places that had school fully in person.

Students in hybrid or remote learning, 2020-21

80% of students

Some schools return online, as Covid-19 cases surge. Vaccinations start for high-priority groups.

Teachers are eligible for the Covid vaccine in more than half of states.

Most districts end the year in-person or hybrid.

Source: Burbio audit of more than 1,200 school districts representing 47 percent of U.S. K-12 enrollment. Note: Learning mode was defined based on the most in-person option available to students.

Income and family background also made a big difference.

A second factor associated with academic declines during the pandemic was a community’s poverty level. Comparing districts with similar remote learning policies, poorer districts had steeper losses.

But in-person learning still mattered: Looking at districts with similar poverty levels, remote learning was associated with greater declines.

A community’s poverty rate and the length of school closures had a “roughly equal” effect on student outcomes, said Sean F. Reardon, a professor of poverty and inequality in education at Stanford, who led a district-level analysis with Thomas J. Kane, an economist at Harvard.

Score changes are measured from 2019 to 2022. Poorest and richest are the top and bottom 20% of districts by percent of students on free/reduced lunch. Mostly in-person and mostly remote are districts that offered traditional in-person learning for more than 90 percent or less than 10 percent of the 2020-21 year.

But the combination — poverty and remote learning — was particularly harmful. For each week spent remote, students in poor districts experienced steeper losses in math than peers in richer districts.

That is notable, because poor districts were also more likely to stay remote for longer .

Some of the country’s largest poor districts are in Democratic-leaning cities that took a more cautious approach to the virus. Poor areas, and Black and Hispanic communities , also suffered higher Covid death rates, making many families and teachers in those districts hesitant to return.

“We wanted to survive,” said Sarah Carpenter, the executive director of Memphis Lift, a parent advocacy group in Memphis, where schools were closed until spring 2021 .

“But I also think, man, looking back, I wish our kids could have gone back to school much quicker,” she added, citing the academic effects.

Other things were also associated with worse student outcomes, including increased anxiety and depression among adults in children’s lives, and the overall restriction of social activity in a community, according to the Stanford and Harvard research .

Even short closures had long-term consequences for children.

While being in school was on average better for academic outcomes, it wasn’t a guarantee. Some districts that opened early, like those in Cherokee County, Ga., a suburb of Atlanta, and Hanover County, Va., lost significant learning and remain behind.

At the same time, many schools are seeing more anxiety and behavioral outbursts among students. And chronic absenteeism from school has surged across demographic groups .

These are signs, experts say, that even short-term closures, and the pandemic more broadly, had lasting effects on the culture of education.

“There was almost, in the Covid era, a sense of, ‘We give up, we’re just trying to keep body and soul together,’ and I think that was corrosive to the higher expectations of schools,” said Margaret Spellings, an education secretary under President George W. Bush who is now chief executive of the Bipartisan Policy Center.

Closing schools did not appear to significantly slow Covid’s spread.

Perhaps the biggest question that hung over school reopenings: Was it safe?

That was largely unknown in the spring of 2020, when schools first shut down. But several experts said that had changed by the fall of 2020, when there were initial signs that children were less likely to become seriously ill, and growing evidence from Europe and parts of the United States that opening schools, with safety measures, did not lead to significantly more transmission.

“Infectious disease leaders have generally agreed that school closures were not an important strategy in stemming the spread of Covid,” said Dr. Jeanne Noble, who directed the Covid response at the U.C.S.F. Parnassus emergency department.

Politically, though, there remains some disagreement about when, exactly, it was safe to reopen school.

Republican governors who pushed to open schools sooner have claimed credit for their approach, while Democrats and teachers’ unions have emphasized their commitment to safety and their investment in helping students recover.

“I do believe it was the right decision,” said Jerry T. Jordan, president of the Philadelphia Federation of Teachers, which resisted returning to school in person over concerns about the availability of vaccines and poor ventilation in school buildings. Philadelphia schools waited to partially reopen until the spring of 2021 , a decision Mr. Jordan believes saved lives.

“It doesn’t matter what is going on in the building and how much people are learning if people are getting the virus and running the potential of dying,” he said.

Pandemic school closures offer lessons for the future.

Though the next health crisis may have different particulars, with different risk calculations, the consequences of closing schools are now well established, experts say.

In the future, infectious disease experts said, they hoped decisions would be guided more by epidemiological data as it emerged, taking into account the trade-offs.

“Could we have used data to better guide our decision making? Yes,” said Dr. Uzma N. Hasan, division chief of pediatric infectious diseases at RWJBarnabas Health in Livingston, N.J. “Fear should not guide our decision making.”

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the Covid-19 Pandemic. ”

The study used estimates of learning loss from the Stanford Education Data Archive . For closure lengths, the study averaged district-level estimates of time spent in remote and hybrid learning compiled by the Covid-19 School Data Hub (C.S.D.H.) and American Enterprise Institute (A.E.I.) . The A.E.I. data defines remote status by whether there was an in-person or hybrid option, even if some students chose to remain virtual. In the C.S.D.H. data set, districts are defined as remote if “all or most” students were virtual.

An earlier version of this article misstated a job description of Dr. Jeanne Noble. She directed the Covid response at the U.C.S.F. Parnassus emergency department. She did not direct the Covid response for the University of California, San Francisco health system.

How we handle corrections

Sarah Mervosh covers education for The Times, focusing on K-12 schools. More about Sarah Mervosh

Claire Cain Miller writes about gender, families and the future of work for The Upshot. She joined The Times in 2008 and was part of a team that won a Pulitzer Prize in 2018 for public service for reporting on workplace sexual harassment issues. More about Claire Cain Miller

Francesca Paris is a Times reporter working with data and graphics for The Upshot. More about Francesca Paris

Other Papers Say: Face up to tech in education

The following editorial originally appeared in The Seattle Times:

The latest large-scale analysis of remote learning and its effects on student achievement underscores what every parent saw with devastating clarity during the pandemic: Children need human connection to thrive.

In fact, according to a recent New York Times investigation, attending school through a computer screen during the COVID-19 crisis was as deleterious to learning as growing up in poverty.

The takeaway should not be more finger-pointing and blame for officials who kept schools closed. That advances nothing. But a muscular and forward-looking confrontation with questions around technology in education is sorely needed.

One reason is that kids will likely face future emergencies that necessitate remote learning, so it’s imperative to get better at delivering education this way. But even now, with students back in class, the same technology that hijacked their attention at home remains present — cellphones. Before the pandemic, these handheld screens were not a ubiquitous force in every classroom. Now, teachers appear powerless against them.

Seattle Public Schools attempted to take a stand by filing a lawsuit against the social media companies running Facebook, TikTok and the like. That is hardly the most direct approach.

Better to do like the Reardan-Edwall district in Eastern Washington, which this year prohibited younger students from possessing cellphones during the school day. Or the Peninsula and Aberdeen school districts, which also have strict anti-cellphone policies.

“We’re having actual, human conversations again,” said a relieved Eric Sobotta, superintendent of the Reardan-Edwall schools, “and we’ve seen a dramatic reduction in bullying.”

Taking responsibility this way puts these districts in Washington’s vanguard. Technology has enormous power, and its potential in education — for good or ill — must be addressed head-on at the state level, not with limp demurrals about local control.

Rep. Stephanie McClintock, R-Vancouver, attempted to get a law passed during this year’s legislative session that would have restricted cellphone use in Washington schools. Her bill never made it out of committee, but she plans to reintroduce it next year.

A study from the London School of Economics found that the mere presence of a phone in class can hamper student achievement, especially for kids who are already struggling.

Earlier this year, state Superintendent Chris Reykdal issued guidance on using artificial intelligence in classrooms, urging teachers to embrace it as a tool to power human inquiry.

That’s a welcome step forward. But it’s just a beginning. To protect kids’ developing brains and capitalize on technology’s undeniable promise, all of Washington’s education leaders need to get a lot smarter about managing these tools — fast. The future is not coming at us; it’s already here.

Related Stories

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines

Jessie s. barrot.

College of Education, Arts and Sciences, National University, Manila, Philippines

Ian I. Llenares

Leo s. del rosario, associated data.

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Recently, the education system has faced an unprecedented health crisis that has shaken up its foundation. Given today’s uncertainties, it is vital to gain a nuanced understanding of students’ online learning experience in times of the COVID-19 pandemic. Although many studies have investigated this area, limited information is available regarding the challenges and the specific strategies that students employ to overcome them. Thus, this study attempts to fill in the void. Using a mixed-methods approach, the findings revealed that the online learning challenges of college students varied in terms of type and extent. Their greatest challenge was linked to their learning environment at home, while their least challenge was technological literacy and competency. The findings further revealed that the COVID-19 pandemic had the greatest impact on the quality of the learning experience and students’ mental health. In terms of strategies employed by students, the most frequently used were resource management and utilization, help-seeking, technical aptitude enhancement, time management, and learning environment control. Implications for classroom practice, policy-making, and future research are discussed.

Introduction

Since the 1990s, the world has seen significant changes in the landscape of education as a result of the ever-expanding influence of technology. One such development is the adoption of online learning across different learning contexts, whether formal or informal, academic and non-academic, and residential or remotely. We began to witness schools, teachers, and students increasingly adopt e-learning technologies that allow teachers to deliver instruction interactively, share resources seamlessly, and facilitate student collaboration and interaction (Elaish et al., 2019 ; Garcia et al., 2018 ). Although the efficacy of online learning has long been acknowledged by the education community (Barrot, 2020 , 2021 ; Cavanaugh et al., 2009 ; Kebritchi et al., 2017 ; Tallent-Runnels et al., 2006 ; Wallace, 2003 ), evidence on the challenges in its implementation continues to build up (e.g., Boelens et al., 2017 ; Rasheed et al., 2020 ).

Recently, the education system has faced an unprecedented health crisis (i.e., COVID-19 pandemic) that has shaken up its foundation. Thus, various governments across the globe have launched a crisis response to mitigate the adverse impact of the pandemic on education. This response includes, but is not limited to, curriculum revisions, provision for technological resources and infrastructure, shifts in the academic calendar, and policies on instructional delivery and assessment. Inevitably, these developments compelled educational institutions to migrate to full online learning until face-to-face instruction is allowed. The current circumstance is unique as it could aggravate the challenges experienced during online learning due to restrictions in movement and health protocols (Gonzales et al., 2020 ; Kapasia et al., 2020 ). Given today’s uncertainties, it is vital to gain a nuanced understanding of students’ online learning experience in times of the COVID-19 pandemic. To date, many studies have investigated this area with a focus on students’ mental health (Copeland et al., 2021 ; Fawaz et al., 2021 ), home learning (Suryaman et al., 2020 ), self-regulation (Carter et al., 2020 ), virtual learning environment (Almaiah et al., 2020 ; Hew et al., 2020 ; Tang et al., 2020 ), and students’ overall learning experience (e.g., Adarkwah, 2021 ; Day et al., 2021 ; Khalil et al., 2020 ; Singh et al., 2020 ). There are two key differences that set the current study apart from the previous studies. First, it sheds light on the direct impact of the pandemic on the challenges that students experience in an online learning space. Second, the current study explores students’ coping strategies in this new learning setup. Addressing these areas would shed light on the extent of challenges that students experience in a full online learning space, particularly within the context of the pandemic. Meanwhile, our nuanced understanding of the strategies that students use to overcome their challenges would provide relevant information to school administrators and teachers to better support the online learning needs of students. This information would also be critical in revisiting the typology of strategies in an online learning environment.

Literature review

Education and the covid-19 pandemic.

In December 2019, an outbreak of a novel coronavirus, known as COVID-19, occurred in China and has spread rapidly across the globe within a few months. COVID-19 is an infectious disease caused by a new strain of coronavirus that attacks the respiratory system (World Health Organization, 2020 ). As of January 2021, COVID-19 has infected 94 million people and has caused 2 million deaths in 191 countries and territories (John Hopkins University, 2021 ). This pandemic has created a massive disruption of the educational systems, affecting over 1.5 billion students. It has forced the government to cancel national examinations and the schools to temporarily close, cease face-to-face instruction, and strictly observe physical distancing. These events have sparked the digital transformation of higher education and challenged its ability to respond promptly and effectively. Schools adopted relevant technologies, prepared learning and staff resources, set systems and infrastructure, established new teaching protocols, and adjusted their curricula. However, the transition was smooth for some schools but rough for others, particularly those from developing countries with limited infrastructure (Pham & Nguyen, 2020 ; Simbulan, 2020 ).

Inevitably, schools and other learning spaces were forced to migrate to full online learning as the world continues the battle to control the vicious spread of the virus. Online learning refers to a learning environment that uses the Internet and other technological devices and tools for synchronous and asynchronous instructional delivery and management of academic programs (Usher & Barak, 2020 ; Huang, 2019 ). Synchronous online learning involves real-time interactions between the teacher and the students, while asynchronous online learning occurs without a strict schedule for different students (Singh & Thurman, 2019 ). Within the context of the COVID-19 pandemic, online learning has taken the status of interim remote teaching that serves as a response to an exigency. However, the migration to a new learning space has faced several major concerns relating to policy, pedagogy, logistics, socioeconomic factors, technology, and psychosocial factors (Donitsa-Schmidt & Ramot, 2020 ; Khalil et al., 2020 ; Varea & González-Calvo, 2020 ). With reference to policies, government education agencies and schools scrambled to create fool-proof policies on governance structure, teacher management, and student management. Teachers, who were used to conventional teaching delivery, were also obliged to embrace technology despite their lack of technological literacy. To address this problem, online learning webinars and peer support systems were launched. On the part of the students, dropout rates increased due to economic, psychological, and academic reasons. Academically, although it is virtually possible for students to learn anything online, learning may perhaps be less than optimal, especially in courses that require face-to-face contact and direct interactions (Franchi, 2020 ).

Related studies

Recently, there has been an explosion of studies relating to the new normal in education. While many focused on national policies, professional development, and curriculum, others zeroed in on the specific learning experience of students during the pandemic. Among these are Copeland et al. ( 2021 ) and Fawaz et al. ( 2021 ) who examined the impact of COVID-19 on college students’ mental health and their coping mechanisms. Copeland et al. ( 2021 ) reported that the pandemic adversely affected students’ behavioral and emotional functioning, particularly attention and externalizing problems (i.e., mood and wellness behavior), which were caused by isolation, economic/health effects, and uncertainties. In Fawaz et al.’s ( 2021 ) study, students raised their concerns on learning and evaluation methods, overwhelming task load, technical difficulties, and confinement. To cope with these problems, students actively dealt with the situation by seeking help from their teachers and relatives and engaging in recreational activities. These active-oriented coping mechanisms of students were aligned with Carter et al.’s ( 2020 ), who explored students’ self-regulation strategies.

In another study, Tang et al. ( 2020 ) examined the efficacy of different online teaching modes among engineering students. Using a questionnaire, the results revealed that students were dissatisfied with online learning in general, particularly in the aspect of communication and question-and-answer modes. Nonetheless, the combined model of online teaching with flipped classrooms improved students’ attention, academic performance, and course evaluation. A parallel study was undertaken by Hew et al. ( 2020 ), who transformed conventional flipped classrooms into fully online flipped classes through a cloud-based video conferencing app. Their findings suggested that these two types of learning environments were equally effective. They also offered ways on how to effectively adopt videoconferencing-assisted online flipped classrooms. Unlike the two studies, Suryaman et al. ( 2020 ) looked into how learning occurred at home during the pandemic. Their findings showed that students faced many obstacles in a home learning environment, such as lack of mastery of technology, high Internet cost, and limited interaction/socialization between and among students. In a related study, Kapasia et al. ( 2020 ) investigated how lockdown impacts students’ learning performance. Their findings revealed that the lockdown made significant disruptions in students’ learning experience. The students also reported some challenges that they faced during their online classes. These include anxiety, depression, poor Internet service, and unfavorable home learning environment, which were aggravated when students are marginalized and from remote areas. Contrary to Kapasia et al.’s ( 2020 ) findings, Gonzales et al. ( 2020 ) found that confinement of students during the pandemic had significant positive effects on their performance. They attributed these results to students’ continuous use of learning strategies which, in turn, improved their learning efficiency.

Finally, there are those that focused on students’ overall online learning experience during the COVID-19 pandemic. One such study was that of Singh et al. ( 2020 ), who examined students’ experience during the COVID-19 pandemic using a quantitative descriptive approach. Their findings indicated that students appreciated the use of online learning during the pandemic. However, half of them believed that the traditional classroom setting was more effective than the online learning platform. Methodologically, the researchers acknowledge that the quantitative nature of their study restricts a deeper interpretation of the findings. Unlike the above study, Khalil et al. ( 2020 ) qualitatively explored the efficacy of synchronized online learning in a medical school in Saudi Arabia. The results indicated that students generally perceive synchronous online learning positively, particularly in terms of time management and efficacy. However, they also reported technical (internet connectivity and poor utility of tools), methodological (content delivery), and behavioral (individual personality) challenges. Their findings also highlighted the failure of the online learning environment to address the needs of courses that require hands-on practice despite efforts to adopt virtual laboratories. In a parallel study, Adarkwah ( 2021 ) examined students’ online learning experience during the pandemic using a narrative inquiry approach. The findings indicated that Ghanaian students considered online learning as ineffective due to several challenges that they encountered. Among these were lack of social interaction among students, poor communication, lack of ICT resources, and poor learning outcomes. More recently, Day et al. ( 2021 ) examined the immediate impact of COVID-19 on students’ learning experience. Evidence from six institutions across three countries revealed some positive experiences and pre-existing inequities. Among the reported challenges are lack of appropriate devices, poor learning space at home, stress among students, and lack of fieldwork and access to laboratories.

Although there are few studies that report the online learning challenges that higher education students experience during the pandemic, limited information is available regarding the specific strategies that they use to overcome them. It is in this context that the current study was undertaken. This mixed-methods study investigates students’ online learning experience in higher education. Specifically, the following research questions are addressed: (1) What is the extent of challenges that students experience in an online learning environment? (2) How did the COVID-19 pandemic impact the online learning challenges that students experience? (3) What strategies did students use to overcome the challenges?

Conceptual framework

The typology of challenges examined in this study is largely based on Rasheed et al.’s ( 2020 ) review of students’ experience in an online learning environment. These challenges are grouped into five general clusters, namely self-regulation (SRC), technological literacy and competency (TLCC), student isolation (SIC), technological sufficiency (TSC), and technological complexity (TCC) challenges (Rasheed et al., 2020 , p. 5). SRC refers to a set of behavior by which students exercise control over their emotions, actions, and thoughts to achieve learning objectives. TLCC relates to a set of challenges about students’ ability to effectively use technology for learning purposes. SIC relates to the emotional discomfort that students experience as a result of being lonely and secluded from their peers. TSC refers to a set of challenges that students experience when accessing available online technologies for learning. Finally, there is TCC which involves challenges that students experience when exposed to complex and over-sufficient technologies for online learning.

To extend Rasheed et al. ( 2020 ) categories and to cover other potential challenges during online classes, two more clusters were added, namely learning resource challenges (LRC) and learning environment challenges (LEC) (Buehler, 2004 ; Recker et al., 2004 ; Seplaki et al., 2014 ; Xue et al., 2020 ). LRC refers to a set of challenges that students face relating to their use of library resources and instructional materials, whereas LEC is a set of challenges that students experience related to the condition of their learning space that shapes their learning experiences, beliefs, and attitudes. Since learning environment at home and learning resources available to students has been reported to significantly impact the quality of learning and their achievement of learning outcomes (Drane et al., 2020 ; Suryaman et al., 2020 ), the inclusion of LRC and LEC would allow us to capture other important challenges that students experience during the pandemic, particularly those from developing regions. This comprehensive list would provide us a clearer and detailed picture of students’ experiences when engaged in online learning in an emergency. Given the restrictions in mobility at macro and micro levels during the pandemic, it is also expected that such conditions would aggravate these challenges. Therefore, this paper intends to understand these challenges from students’ perspectives since they are the ones that are ultimately impacted when the issue is about the learning experience. We also seek to explore areas that provide inconclusive findings, thereby setting the path for future research.

Material and methods

The present study adopted a descriptive, mixed-methods approach to address the research questions. This approach allowed the researchers to collect complex data about students’ experience in an online learning environment and to clearly understand the phenomena from their perspective.

Participants

This study involved 200 (66 male and 134 female) students from a private higher education institution in the Philippines. These participants were Psychology, Physical Education, and Sports Management majors whose ages ranged from 17 to 25 ( x ̅  = 19.81; SD  = 1.80). The students have been engaged in online learning for at least two terms in both synchronous and asynchronous modes. The students belonged to low- and middle-income groups but were equipped with the basic online learning equipment (e.g., computer, headset, speakers) and computer skills necessary for their participation in online classes. Table ​ Table1 1 shows the primary and secondary platforms that students used during their online classes. The primary platforms are those that are formally adopted by teachers and students in a structured academic context, whereas the secondary platforms are those that are informally and spontaneously used by students and teachers for informal learning and to supplement instructional delivery. Note that almost all students identified MS Teams as their primary platform because it is the official learning management system of the university.

Participants’ Online Learning Platforms

Informed consent was sought from the participants prior to their involvement. Before students signed the informed consent form, they were oriented about the objectives of the study and the extent of their involvement. They were also briefed about the confidentiality of information, their anonymity, and their right to refuse to participate in the investigation. Finally, the participants were informed that they would incur no additional cost from their participation.

Instrument and data collection

The data were collected using a retrospective self-report questionnaire and a focused group discussion (FGD). A self-report questionnaire was considered appropriate because the indicators relate to affective responses and attitude (Araujo et al., 2017 ; Barrot, 2016 ; Spector, 1994 ). Although the participants may tell more than what they know or do in a self-report survey (Matsumoto, 1994 ), this challenge was addressed by explaining to them in detail each of the indicators and using methodological triangulation through FGD. The questionnaire was divided into four sections: (1) participant’s personal information section, (2) the background information on the online learning environment, (3) the rating scale section for the online learning challenges, (4) the open-ended section. The personal information section asked about the students’ personal information (name, school, course, age, and sex), while the background information section explored the online learning mode and platforms (primary and secondary) used in class, and students’ length of engagement in online classes. The rating scale section contained 37 items that relate to SRC (6 items), TLCC (10 items), SIC (4 items), TSC (6 items), TCC (3 items), LRC (4 items), and LEC (4 items). The Likert scale uses six scores (i.e., 5– to a very great extent , 4– to a great extent , 3– to a moderate extent , 2– to some extent , 1– to a small extent , and 0 –not at all/negligible ) assigned to each of the 37 items. Finally, the open-ended questions asked about other challenges that students experienced, the impact of the pandemic on the intensity or extent of the challenges they experienced, and the strategies that the participants employed to overcome the eight different types of challenges during online learning. Two experienced educators and researchers reviewed the questionnaire for clarity, accuracy, and content and face validity. The piloting of the instrument revealed that the tool had good internal consistency (Cronbach’s α = 0.96).

The FGD protocol contains two major sections: the participants’ background information and the main questions. The background information section asked about the students’ names, age, courses being taken, online learning mode used in class. The items in the main questions section covered questions relating to the students’ overall attitude toward online learning during the pandemic, the reasons for the scores they assigned to each of the challenges they experienced, the impact of the pandemic on students’ challenges, and the strategies they employed to address the challenges. The same experts identified above validated the FGD protocol.

Both the questionnaire and the FGD were conducted online via Google survey and MS Teams, respectively. It took approximately 20 min to complete the questionnaire, while the FGD lasted for about 90 min. Students were allowed to ask for clarification and additional explanations relating to the questionnaire content, FGD, and procedure. Online surveys and interview were used because of the ongoing lockdown in the city. For the purpose of triangulation, 20 (10 from Psychology and 10 from Physical Education and Sports Management) randomly selected students were invited to participate in the FGD. Two separate FGDs were scheduled for each group and were facilitated by researcher 2 and researcher 3, respectively. The interviewers ensured that the participants were comfortable and open to talk freely during the FGD to avoid social desirability biases (Bergen & Labonté, 2020 ). These were done by informing the participants that there are no wrong responses and that their identity and responses would be handled with the utmost confidentiality. With the permission of the participants, the FGD was recorded to ensure that all relevant information was accurately captured for transcription and analysis.

Data analysis

To address the research questions, we used both quantitative and qualitative analyses. For the quantitative analysis, we entered all the data into an excel spreadsheet. Then, we computed the mean scores ( M ) and standard deviations ( SD ) to determine the level of challenges experienced by students during online learning. The mean score for each descriptor was interpreted using the following scheme: 4.18 to 5.00 ( to a very great extent ), 3.34 to 4.17 ( to a great extent ), 2.51 to 3.33 ( to a moderate extent ), 1.68 to 2.50 ( to some extent ), 0.84 to 1.67 ( to a small extent ), and 0 to 0.83 ( not at all/negligible ). The equal interval was adopted because it produces more reliable and valid information than other types of scales (Cicchetti et al., 2006 ).

For the qualitative data, we analyzed the students’ responses in the open-ended questions and the transcribed FGD using the predetermined categories in the conceptual framework. Specifically, we used multilevel coding in classifying the codes from the transcripts (Birks & Mills, 2011 ). To do this, we identified the relevant codes from the responses of the participants and categorized these codes based on the similarities or relatedness of their properties and dimensions. Then, we performed a constant comparative and progressive analysis of cases to allow the initially identified subcategories to emerge and take shape. To ensure the reliability of the analysis, two coders independently analyzed the qualitative data. Both coders familiarize themselves with the purpose, research questions, research method, and codes and coding scheme of the study. They also had a calibration session and discussed ways on how they could consistently analyze the qualitative data. Percent of agreement between the two coders was 86 percent. Any disagreements in the analysis were discussed by the coders until an agreement was achieved.

This study investigated students’ online learning experience in higher education within the context of the pandemic. Specifically, we identified the extent of challenges that students experienced, how the COVID-19 pandemic impacted their online learning experience, and the strategies that they used to confront these challenges.

The extent of students’ online learning challenges

Table ​ Table2 2 presents the mean scores and SD for the extent of challenges that students’ experienced during online learning. Overall, the students experienced the identified challenges to a moderate extent ( x ̅  = 2.62, SD  = 1.03) with scores ranging from x ̅  = 1.72 ( to some extent ) to x ̅  = 3.58 ( to a great extent ). More specifically, the greatest challenge that students experienced was related to the learning environment ( x ̅  = 3.49, SD  = 1.27), particularly on distractions at home, limitations in completing the requirements for certain subjects, and difficulties in selecting the learning areas and study schedule. It is, however, found that the least challenge was on technological literacy and competency ( x ̅  = 2.10, SD  = 1.13), particularly on knowledge and training in the use of technology, technological intimidation, and resistance to learning technologies. Other areas that students experienced the least challenge are Internet access under TSC and procrastination under SRC. Nonetheless, nearly half of the students’ responses per indicator rated the challenges they experienced as moderate (14 of the 37 indicators), particularly in TCC ( x ̅  = 2.51, SD  = 1.31), SIC ( x ̅  = 2.77, SD  = 1.34), and LRC ( x ̅  = 2.93, SD  = 1.31).

The Extent of Students’ Challenges during the Interim Online Learning

Out of 200 students, 181 responded to the question about other challenges that they experienced. Most of their responses were already covered by the seven predetermined categories, except for 18 responses related to physical discomfort ( N  = 5) and financial challenges ( N  = 13). For instance, S108 commented that “when it comes to eyes and head, my eyes and head get ache if the session of class was 3 h straight in front of my gadget.” In the same vein, S194 reported that “the long exposure to gadgets especially laptop, resulting in body pain & headaches.” With reference to physical financial challenges, S66 noted that “not all the time I have money to load”, while S121 claimed that “I don't know until when are we going to afford budgeting our money instead of buying essentials.”

Impact of the pandemic on students’ online learning challenges

Another objective of this study was to identify how COVID-19 influenced the online learning challenges that students experienced. As shown in Table ​ Table3, 3 , most of the students’ responses were related to teaching and learning quality ( N  = 86) and anxiety and other mental health issues ( N  = 52). Regarding the adverse impact on teaching and learning quality, most of the comments relate to the lack of preparation for the transition to online platforms (e.g., S23, S64), limited infrastructure (e.g., S13, S65, S99, S117), and poor Internet service (e.g., S3, S9, S17, S41, S65, S99). For the anxiety and mental health issues, most students reported that the anxiety, boredom, sadness, and isolation they experienced had adversely impacted the way they learn (e.g., S11, S130), completing their tasks/activities (e.g., S56, S156), and their motivation to continue studying (e.g., S122, S192). The data also reveal that COVID-19 aggravated the financial difficulties experienced by some students ( N  = 16), consequently affecting their online learning experience. This financial impact mainly revolved around the lack of funding for their online classes as a result of their parents’ unemployment and the high cost of Internet data (e.g., S18, S113, S167). Meanwhile, few concerns were raised in relation to COVID-19’s impact on mobility ( N  = 7) and face-to-face interactions ( N  = 7). For instance, some commented that the lack of face-to-face interaction with her classmates had a detrimental effect on her learning (S46) and socialization skills (S36), while others reported that restrictions in mobility limited their learning experience (S78, S110). Very few comments were related to no effect ( N  = 4) and positive effect ( N  = 2). The above findings suggest the pandemic had additive adverse effects on students’ online learning experience.

Summary of students’ responses on the impact of COVID-19 on their online learning experience

Students’ strategies to overcome challenges in an online learning environment

The third objective of this study is to identify the strategies that students employed to overcome the different online learning challenges they experienced. Table ​ Table4 4 presents that the most commonly used strategies used by students were resource management and utilization ( N  = 181), help-seeking ( N  = 155), technical aptitude enhancement ( N  = 122), time management ( N  = 98), and learning environment control ( N  = 73). Not surprisingly, the top two strategies were also the most consistently used across different challenges. However, looking closely at each of the seven challenges, the frequency of using a particular strategy varies. For TSC and LRC, the most frequently used strategy was resource management and utilization ( N  = 52, N  = 89, respectively), whereas technical aptitude enhancement was the students’ most preferred strategy to address TLCC ( N  = 77) and TCC ( N  = 38). In the case of SRC, SIC, and LEC, the most frequently employed strategies were time management ( N  = 71), psychological support ( N  = 53), and learning environment control ( N  = 60). In terms of consistency, help-seeking appears to be the most consistent across the different challenges in an online learning environment. Table ​ Table4 4 further reveals that strategies used by students within a specific type of challenge vary.

Students’ Strategies to Overcome Online Learning Challenges

Discussion and conclusions

The current study explores the challenges that students experienced in an online learning environment and how the pandemic impacted their online learning experience. The findings revealed that the online learning challenges of students varied in terms of type and extent. Their greatest challenge was linked to their learning environment at home, while their least challenge was technological literacy and competency. Based on the students’ responses, their challenges were also found to be aggravated by the pandemic, especially in terms of quality of learning experience, mental health, finances, interaction, and mobility. With reference to previous studies (i.e., Adarkwah, 2021 ; Copeland et al., 2021 ; Day et al., 2021 ; Fawaz et al., 2021 ; Kapasia et al., 2020 ; Khalil et al., 2020 ; Singh et al., 2020 ), the current study has complemented their findings on the pedagogical, logistical, socioeconomic, technological, and psychosocial online learning challenges that students experience within the context of the COVID-19 pandemic. Further, this study extended previous studies and our understanding of students’ online learning experience by identifying both the presence and extent of online learning challenges and by shedding light on the specific strategies they employed to overcome them.

Overall findings indicate that the extent of challenges and strategies varied from one student to another. Hence, they should be viewed as a consequence of interaction several many factors. Students’ responses suggest that their online learning challenges and strategies were mediated by the resources available to them, their interaction with their teachers and peers, and the school’s existing policies and guidelines for online learning. In the context of the pandemic, the imposed lockdowns and students’ socioeconomic condition aggravated the challenges that students experience.

While most studies revealed that technology use and competency were the most common challenges that students face during the online classes (see Rasheed et al., 2020 ), the case is a bit different in developing countries in times of pandemic. As the findings have shown, the learning environment is the greatest challenge that students needed to hurdle, particularly distractions at home (e.g., noise) and limitations in learning space and facilities. This data suggests that online learning challenges during the pandemic somehow vary from the typical challenges that students experience in a pre-pandemic online learning environment. One possible explanation for this result is that restriction in mobility may have aggravated this challenge since they could not go to the school or other learning spaces beyond the vicinity of their respective houses. As shown in the data, the imposition of lockdown restricted students’ learning experience (e.g., internship and laboratory experiments), limited their interaction with peers and teachers, caused depression, stress, and anxiety among students, and depleted the financial resources of those who belong to lower-income group. All of these adversely impacted students’ learning experience. This finding complemented earlier reports on the adverse impact of lockdown on students’ learning experience and the challenges posed by the home learning environment (e.g., Day et al., 2021 ; Kapasia et al., 2020 ). Nonetheless, further studies are required to validate the impact of restrictions on mobility on students’ online learning experience. The second reason that may explain the findings relates to students’ socioeconomic profile. Consistent with the findings of Adarkwah ( 2021 ) and Day et al. ( 2021 ), the current study reveals that the pandemic somehow exposed the many inequities in the educational systems within and across countries. In the case of a developing country, families from lower socioeconomic strata (as in the case of the students in this study) have limited learning space at home, access to quality Internet service, and online learning resources. This is the reason the learning environment and learning resources recorded the highest level of challenges. The socioeconomic profile of the students (i.e., low and middle-income group) is the same reason financial problems frequently surfaced from their responses. These students frequently linked the lack of financial resources to their access to the Internet, educational materials, and equipment necessary for online learning. Therefore, caution should be made when interpreting and extending the findings of this study to other contexts, particularly those from higher socioeconomic strata.

Among all the different online learning challenges, the students experienced the least challenge on technological literacy and competency. This is not surprising considering a plethora of research confirming Gen Z students’ (born since 1996) high technological and digital literacy (Barrot, 2018 ; Ng, 2012 ; Roblek et al., 2019 ). Regarding the impact of COVID-19 on students’ online learning experience, the findings reveal that teaching and learning quality and students’ mental health were the most affected. The anxiety that students experienced does not only come from the threats of COVID-19 itself but also from social and physical restrictions, unfamiliarity with new learning platforms, technical issues, and concerns about financial resources. These findings are consistent with that of Copeland et al. ( 2021 ) and Fawaz et al. ( 2021 ), who reported the adverse effects of the pandemic on students’ mental and emotional well-being. This data highlights the need to provide serious attention to the mediating effects of mental health, restrictions in mobility, and preparedness in delivering online learning.

Nonetheless, students employed a variety of strategies to overcome the challenges they faced during online learning. For instance, to address the home learning environment problems, students talked to their family (e.g., S12, S24), transferred to a quieter place (e.g., S7, S 26), studied at late night where all family members are sleeping already (e.g., S51), and consulted with their classmates and teachers (e.g., S3, S9, S156, S193). To overcome the challenges in learning resources, students used the Internet (e.g., S20, S27, S54, S91), joined Facebook groups that share free resources (e.g., S5), asked help from family members (e.g., S16), used resources available at home (e.g., S32), and consulted with the teachers (e.g., S124). The varying strategies of students confirmed earlier reports on the active orientation that students take when faced with academic- and non-academic-related issues in an online learning space (see Fawaz et al., 2021 ). The specific strategies that each student adopted may have been shaped by different factors surrounding him/her, such as available resources, student personality, family structure, relationship with peers and teacher, and aptitude. To expand this study, researchers may further investigate this area and explore how and why different factors shape their use of certain strategies.

Several implications can be drawn from the findings of this study. First, this study highlighted the importance of emergency response capability and readiness of higher education institutions in case another crisis strikes again. Critical areas that need utmost attention include (but not limited to) national and institutional policies, protocol and guidelines, technological infrastructure and resources, instructional delivery, staff development, potential inequalities, and collaboration among key stakeholders (i.e., parents, students, teachers, school leaders, industry, government education agencies, and community). Second, the findings have expanded our understanding of the different challenges that students might confront when we abruptly shift to full online learning, particularly those from countries with limited resources, poor Internet infrastructure, and poor home learning environment. Schools with a similar learning context could use the findings of this study in developing and enhancing their respective learning continuity plans to mitigate the adverse impact of the pandemic. This study would also provide students relevant information needed to reflect on the possible strategies that they may employ to overcome the challenges. These are critical information necessary for effective policymaking, decision-making, and future implementation of online learning. Third, teachers may find the results useful in providing proper interventions to address the reported challenges, particularly in the most critical areas. Finally, the findings provided us a nuanced understanding of the interdependence of learning tools, learners, and learning outcomes within an online learning environment; thus, giving us a multiperspective of hows and whys of a successful migration to full online learning.

Some limitations in this study need to be acknowledged and addressed in future studies. One limitation of this study is that it exclusively focused on students’ perspectives. Future studies may widen the sample by including all other actors taking part in the teaching–learning process. Researchers may go deeper by investigating teachers’ views and experience to have a complete view of the situation and how different elements interact between them or affect the others. Future studies may also identify some teacher-related factors that could influence students’ online learning experience. In the case of students, their age, sex, and degree programs may be examined in relation to the specific challenges and strategies they experience. Although the study involved a relatively large sample size, the participants were limited to college students from a Philippine university. To increase the robustness of the findings, future studies may expand the learning context to K-12 and several higher education institutions from different geographical regions. As a final note, this pandemic has undoubtedly reshaped and pushed the education system to its limits. However, this unprecedented event is the same thing that will make the education system stronger and survive future threats.

Authors’ contributions

Jessie Barrot led the planning, prepared the instrument, wrote the report, and processed and analyzed data. Ian Llenares participated in the planning, fielded the instrument, processed and analyzed data, reviewed the instrument, and contributed to report writing. Leo del Rosario participated in the planning, fielded the instrument, processed and analyzed data, reviewed the instrument, and contributed to report writing.

No funding was received in the conduct of this study.

Availability of data and materials

Declarations.

The study has undergone appropriate ethics protocol.

Informed consent was sought from the participants.

Authors consented the publication. Participants consented to publication as long as confidentiality is observed.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Adarkwah MA. “I’m not against online teaching, but what about us?”: ICT in Ghana post Covid-19. Education and Information Technologies. 2021; 26 (2):1665–1685. doi: 10.1007/s10639-020-10331-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Almaiah MA, Al-Khasawneh A, Althunibat A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Education and Information Technologies. 2020; 25 :5261–5280. doi: 10.1007/s10639-020-10219-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Araujo T, Wonneberger A, Neijens P, de Vreese C. How much time do you spend online? Understanding and improving the accuracy of self-reported measures of Internet use. Communication Methods and Measures. 2017; 11 (3):173–190. doi: 10.1080/19312458.2017.1317337. [ CrossRef ] [ Google Scholar ]
  • Barrot, J. S. (2016). Using Facebook-based e-portfolio in ESL writing classrooms: Impact and challenges. Language, Culture and Curriculum, 29 (3), 286–301.
  • Barrot, J. S. (2018). Facebook as a learning environment for language teaching and learning: A critical analysis of the literature from 2010 to 2017. Journal of Computer Assisted Learning, 34 (6), 863–875.
  • Barrot, J. S. (2020). Scientific mapping of social media in education: A decade of exponential growth. Journal of Educational Computing Research . 10.1177/0735633120972010.
  • Barrot, J. S. (2021). Social media as a language learning environment: A systematic review of the literature (2008–2019). Computer Assisted Language Learning . 10.1080/09588221.2021.1883673.
  • Bergen N, Labonté R. “Everything is perfect, and we have no problems”: Detecting and limiting social desirability bias in qualitative research. Qualitative Health Research. 2020; 30 (5):783–792. doi: 10.1177/1049732319889354. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Birks, M., & Mills, J. (2011). Grounded theory: A practical guide . Sage.
  • Boelens R, De Wever B, Voet M. Four key challenges to the design of blended learning: A systematic literature review. Educational Research Review. 2017; 22 :1–18. doi: 10.1016/j.edurev.2017.06.001. [ CrossRef ] [ Google Scholar ]
  • Buehler MA. Where is the library in course management software? Journal of Library Administration. 2004; 41 (1–2):75–84. doi: 10.1300/J111v41n01_07. [ CrossRef ] [ Google Scholar ]
  • Carter RA, Jr, Rice M, Yang S, Jackson HA. Self-regulated learning in online learning environments: Strategies for remote learning. Information and Learning Sciences. 2020; 121 (5/6):321–329. doi: 10.1108/ILS-04-2020-0114. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh CS, Barbour MK, Clark T. Research and practice in K-12 online learning: A review of open access literature. The International Review of Research in Open and Distributed Learning. 2009; 10 (1):1–22. doi: 10.19173/irrodl.v10i1.607. [ CrossRef ] [ Google Scholar ]
  • Cicchetti D, Bronen R, Spencer S, Haut S, Berg A, Oliver P, Tyrer P. Rating scales, scales of measurement, issues of reliability: Resolving some critical issues for clinicians and researchers. The Journal of Nervous and Mental Disease. 2006; 194 (8):557–564. doi: 10.1097/01.nmd.0000230392.83607.c5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Copeland WE, McGinnis E, Bai Y, Adams Z, Nardone H, Devadanam V, Hudziak JJ. Impact of COVID-19 pandemic on college student mental health and wellness. Journal of the American Academy of Child & Adolescent Psychiatry. 2021; 60 (1):134–141. doi: 10.1016/j.jaac.2020.08.466. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Day T, Chang ICC, Chung CKL, Doolittle WE, Housel J, McDaniel PN. The immediate impact of COVID-19 on postsecondary teaching and learning. The Professional Geographer. 2021; 73 (1):1–13. doi: 10.1080/00330124.2020.1823864. [ CrossRef ] [ Google Scholar ]
  • Donitsa-Schmidt S, Ramot R. Opportunities and challenges: Teacher education in Israel in the Covid-19 pandemic. Journal of Education for Teaching. 2020; 46 (4):586–595. doi: 10.1080/02607476.2020.1799708. [ CrossRef ] [ Google Scholar ]
  • Drane, C., Vernon, L., & O’Shea, S. (2020). The impact of ‘learning at home’on the educational outcomes of vulnerable children in Australia during the COVID-19 pandemic. Literature Review Prepared by the National Centre for Student Equity in Higher Education. Curtin University, Australia.
  • Elaish M, Shuib L, Ghani N, Yadegaridehkordi E. Mobile English language learning (MELL): A literature review. Educational Review. 2019; 71 (2):257–276. doi: 10.1080/00131911.2017.1382445. [ CrossRef ] [ Google Scholar ]
  • Fawaz, M., Al Nakhal, M., & Itani, M. (2021). COVID-19 quarantine stressors and management among Lebanese students: A qualitative study.  Current Psychology , 1–8. [ PMC free article ] [ PubMed ]
  • Franchi T. The impact of the Covid-19 pandemic on current anatomy education and future careers: A student’s perspective. Anatomical Sciences Education. 2020; 13 (3):312–315. doi: 10.1002/ase.1966. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garcia R, Falkner K, Vivian R. Systematic literature review: Self-regulated learning strategies using e-learning tools for computer science. Computers & Education. 2018; 123 :150–163. doi: 10.1016/j.compedu.2018.05.006. [ CrossRef ] [ Google Scholar ]
  • Gonzalez T, De La Rubia MA, Hincz KP, Comas-Lopez M, Subirats L, Fort S, Sacha GM. Influence of COVID-19 confinement on students’ performance in higher education. PLoS ONE. 2020; 15 (10):e0239490. doi: 10.1371/journal.pone.0239490. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hew KF, Jia C, Gonda DE, Bai S. Transitioning to the “new normal” of learning in unpredictable times: Pedagogical practices and learning performance in fully online flipped classrooms. International Journal of Educational Technology in Higher Education. 2020; 17 (1):1–22. doi: 10.1186/s41239-020-00234-x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang Q. Comparing teacher’s roles of F2F learning and online learning in a blended English course. Computer Assisted Language Learning. 2019; 32 (3):190–209. doi: 10.1080/09588221.2018.1540434. [ CrossRef ] [ Google Scholar ]
  • John Hopkins University. (2021). Global map . https://coronavirus.jhu.edu/
  • Kapasia N, Paul P, Roy A, Saha J, Zaveri A, Mallick R, Chouhan P. Impact of lockdown on learning status of undergraduate and postgraduate students during COVID-19 pandemic in West Bengal. India. Children and Youth Services Review. 2020; 116 :105194. doi: 10.1016/j.childyouth.2020.105194. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kebritchi M, Lipschuetz A, Santiague L. Issues and challenges for teaching successful online courses in higher education: A literature review. Journal of Educational Technology Systems. 2017; 46 (1):4–29. doi: 10.1177/0047239516661713. [ CrossRef ] [ Google Scholar ]
  • Khalil R, Mansour AE, Fadda WA, Almisnid K, Aldamegh M, Al-Nafeesah A, Al-Wutayd O. The sudden transition to synchronized online learning during the COVID-19 pandemic in Saudi Arabia: A qualitative study exploring medical students’ perspectives. BMC Medical Education. 2020; 20 (1):1–10. doi: 10.1186/s12909-020-02208-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Matsumoto K. Introspection, verbal reports and second language learning strategy research. Canadian Modern Language Review. 1994; 50 (2):363–386. doi: 10.3138/cmlr.50.2.363. [ CrossRef ] [ Google Scholar ]
  • Ng W. Can we teach digital natives digital literacy? Computers & Education. 2012; 59 (3):1065–1078. doi: 10.1016/j.compedu.2012.04.016. [ CrossRef ] [ Google Scholar ]
  • Pham T, Nguyen H. COVID-19: Challenges and opportunities for Vietnamese higher education. Higher Education in Southeast Asia and beyond. 2020; 8 :22–24. [ Google Scholar ]
  • Rasheed RA, Kamsin A, Abdullah NA. Challenges in the online component of blended learning: A systematic review. Computers & Education. 2020; 144 :103701. doi: 10.1016/j.compedu.2019.103701. [ CrossRef ] [ Google Scholar ]
  • Recker MM, Dorward J, Nelson LM. Discovery and use of online learning resources: Case study findings. Educational Technology & Society. 2004; 7 (2):93–104. [ Google Scholar ]
  • Roblek V, Mesko M, Dimovski V, Peterlin J. Smart technologies as social innovation and complex social issues of the Z generation. Kybernetes. 2019; 48 (1):91–107. doi: 10.1108/K-09-2017-0356. [ CrossRef ] [ Google Scholar ]
  • Seplaki CL, Agree EM, Weiss CO, Szanton SL, Bandeen-Roche K, Fried LP. Assistive devices in context: Cross-sectional association between challenges in the home environment and use of assistive devices for mobility. The Gerontologist. 2014; 54 (4):651–660. doi: 10.1093/geront/gnt030. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Simbulan N. COVID-19 and its impact on higher education in the Philippines. Higher Education in Southeast Asia and beyond. 2020; 8 :15–18. [ Google Scholar ]
  • Singh K, Srivastav S, Bhardwaj A, Dixit A, Misra S. Medical education during the COVID-19 pandemic: a single institution experience. Indian Pediatrics. 2020; 57 (7):678–679. doi: 10.1007/s13312-020-1899-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Singh V, Thurman A. How many ways can we define online learning? A systematic literature review of definitions of online learning (1988–2018) American Journal of Distance Education. 2019; 33 (4):289–306. doi: 10.1080/08923647.2019.1663082. [ CrossRef ] [ Google Scholar ]
  • Spector P. Using self-report questionnaires in OB research: A comment on the use of a controversial method. Journal of Organizational Behavior. 1994; 15 (5):385–392. doi: 10.1002/job.4030150503. [ CrossRef ] [ Google Scholar ]
  • Suryaman M, Cahyono Y, Muliansyah D, Bustani O, Suryani P, Fahlevi M, Munthe AP. COVID-19 pandemic and home online learning system: Does it affect the quality of pharmacy school learning? Systematic Reviews in Pharmacy. 2020; 11 :524–530. [ Google Scholar ]
  • Tallent-Runnels MK, Thomas JA, Lan WY, Cooper S, Ahern TC, Shaw SM, Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tang, T., Abuhmaid, A. M., Olaimat, M., Oudat, D. M., Aldhaeebi, M., & Bamanger, E. (2020). Efficiency of flipped classroom with online-based teaching under COVID-19.  Interactive Learning Environments , 1–12.
  • Usher M, Barak M. Team diversity as a predictor of innovation in team projects of face-to-face and online learners. Computers & Education. 2020; 144 :103702. doi: 10.1016/j.compedu.2019.103702. [ CrossRef ] [ Google Scholar ]
  • Varea, V., & González-Calvo, G. (2020). Touchless classes and absent bodies: Teaching physical education in times of Covid-19.  Sport, Education and Society , 1–15.
  • Wallace RM. Online learning in higher education: A review of research on interactions among teachers and students. Education, Communication & Information. 2003; 3 (2):241–280. doi: 10.1080/14636310303143. [ CrossRef ] [ Google Scholar ]
  • World Health Organization (2020). Coronavirus . https://www.who.int/health-topics/coronavirus#tab=tab_1
  • Xue, E., Li, J., Li, T., & Shang, W. (2020). China’s education response to COVID-19: A perspective of policy analysis.  Educational Philosophy and Theory , 1–13.

IMAGES

  1. How the pandemic has changed education

    essay on education during the time of pandemic

  2. ≫ Impact of Covid-19 on Education System in India Free Essay Sample on

    essay on education during the time of pandemic

  3. How COVID-19 Pandemic Has Changed Education Forever

    essay on education during the time of pandemic

  4. Highlighting the challenges and triumphs of science teachers during the

    essay on education during the time of pandemic

  5. The COVID-19 Pandemic: Shocks to Education and Policy Response Infographic

    essay on education during the time of pandemic

  6. ≫ Nationalism and Covid-19 Pandemic Free Essay Sample on Samploon.com

    essay on education during the time of pandemic

VIDEO

  1. Future of education in a post-pandemic world

  2. Education During Covid-19 and Beyond

  3. The Most MYSTERIOUS Exam in the World

COMMENTS

  1. Coronavirus and schools: Reflections on education one year into the

    March 12, 2021. 11 min read. One year ago, the World Health Organization declared the spread of COVID-19 a worldwide pandemic. Reacting to the virus, schools at every level were sent scrambling ...

  2. U.S. Education in the Time of COVID

    Spring 2020. In spring 2020, at the beginning of the COVID-19 pandemic, the majority of American schools transitioned to distance education models. During this period, 77 percent of public schools moved to online distance learning and 84 percent of college students reported having some or all classes moved to online-only instruction.

  3. The Effect of COVID-19 on Education

    The transition to an online education during the coronavirus disease 2019 (COVID-19) pandemic may bring about adverse educational changes and adverse health consequences for children and young adult learners in grade school, middle school, high school, college, and professional schools. The effects may differ by age, maturity, and socioeconomic ...

  4. Insights on Leading Education During the COVID-19 Pandemic

    I analyzed those reflective essays of Harvard graduates leading educational organizations around the world, which became the foundation for the first book, Leading Education Through COVID-19: Upholding the Right to Education. Next, I turned to social entrepreneurs. One of the things that I discovered, as a result of my association with the ...

  5. Education Response and Recovery During and After COVID-19

    The COVID-19 pandemic has caused abrupt and profound changes around the world. This is the worst shock to education systems in decades, with the longest school closures combined with looming recession. It will set back progress made on global development goals, particularly those focused on education. The economic crises within countries and ...

  6. The state of education during the COVID pandemic

    THE STATE OF HIGHER EDUCATION. ‌‌. The higher education experience was markedly different than usual for those enrolling during the COVID-19 pandemic. Higher education institutions of all kinds found their instructional methods profoundly disrupted by the closure of their physical campuses, and the crisis exposed the urgent need for policy ...

  7. Education in the time of COVID-19

    I. Educational measures during the COVID-19 crisis1 The information collected on the 33 countries of Latin America and the Caribbean up to 7 July 2020 shows that, in the area of education, most of the measures taken are related to the suspension of face-to-face classes at all levels of education. Of these countries, 32 suspended face-to-face ...

  8. Learning in times of COVID-19: Students', Families ...

    The COVID-19 pandemic has had a profound and sudden impact on many areas of life; work, leisure time and family alike. These changes have also affected educational processes in formal and informal learning environments. Public institutions such as childcare settings, schools, universities and further education providers ceased onsite teaching and moved to distance learning - or closed down ...

  9. Teaching and Learning in Times of COVID-19: Uses of Digital

    This paper intends to analyze the activities carried out during this time through digital technologies and the conceptions of teaching and learning that they reflect. ... OECD Education Working Papers, 41. Paris: OECD Publishing. doi: 10.1787/218525261154 ... [Outlook on Spanish Education After COVID-19 pandemic: The Opinion of the Educational ...

  10. COVID-19: How has the pandemic affected education?

    COVID-19. Follow. Before the pandemic, the world was already facing an education crisis. Last year, 53% of 10-year-old children in low- and middle-income countries either had failed to learn to read with comprehension or were out of school. COVID-19 has exacerbated learning gaps further, taking 1.6 billion students out of school at its peak.

  11. The rise of online learning during the COVID-19 pandemic

    The COVID-19 has resulted in schools shut all across the world. Globally, over 1.2 billion children are out of the classroom. As a result, education has changed dramatically, with the distinctive rise of e-learning, whereby teaching is undertaken remotely and on digital platforms. Research suggests that online learning has been shown to ...

  12. The Impact of the COVID-19 Pandemic on the Quality of Educational

    1. Introduction. Education is "a fundamental human right, a global common good and a primary driver of progress across all the 17 Sustainable Development Goals (SDG) of the 2030 Agenda as a bedrock of just, equal, inclusive, peaceful societies" [].The COVID-19 pandemic, labelled as a "black swan" event [], "catastrophic calamity" [] and compared to the World War II in terms of ...

  13. The changes we need: Education post COVID-19

    Introduction. The impact of the COVID-19 pandemic on education is both unprecedented and widespread in education history, impacting nearly every student in the world (UNICEF 2020; United Nations 2020).The unexpected arrival of the pandemic and subsequent school closures saw massive effort to adapt and innovate by educators and education systems around the world.

  14. The pandemic's impact on education

    The school closings due to coronavirus concerns have turned a spotlight on those problems and how they contribute to educational and income inequality in the nation. The Gazette talked to Reville, the Francis Keppel Professor of Practice of Educational Policy and Administration at Harvard Graduate School of Education, about the effects of the ...

  15. What Life Was Like for Students in the Pandemic Year

    In these short essays below, teacher Claire Marie Grogan's 11th grade students at Oceanside High School on Long Island, N.Y., describe their pandemic experiences. Their writings have been ...

  16. Personal Reflections on Education During the Pandemic

    My analysis of all of this is that education provides people with a sense of normalcy and forward progress even during the horrific time we are now enduring. The socialization aspects of higher education are very important, and its absence is very real and a huge cost of the pandemic. We have learned that for young children, the need for face ...

  17. Education during a pandemic

    The coronavirus pandemic has magnified deep-rooted racial and social injustices and perpetuated educational inequities. With the shift to online teaching, the digital divide has become a chasm, separating those who have access to school learning and those who don't. Families in our project, like so many other Americans, described struggling ...

  18. What the Data Says About Pandemic School Closures, Four Years Later

    A second factor associated with academic declines during the pandemic was a community's poverty level. Comparing districts with similar remote learning policies, poorer districts had steeper losses.

  19. Education and the COVID-19 pandemic

    COVID-19 is the greatest challenge that these expanded national education systems have ever faced. Many governments have ordered institutions to cease face-to-face instruction for most of their students, requiring them to switch, almost overnight, to online teaching and virtual education. This brief note offers pragmatic guidance to teachers ...

  20. The Lasting Effects of COVID on Schooling

    And, for most of the second pandemic school year, schools, by their own admission, weren't back to normal: Nearly 4 in 10 schools reported higher absenteeism among students, and even more ...

  21. Other Papers Say: Face up to tech in education

    The latest large-scale analysis of remote learning and its effects on student achievement underscores what every parent saw with devastating clarity during the pandemic: Children need human connection

  22. Students' experience of online learning during the COVID‐19 pandemic: A

    This study explores how students at different stages of their K‐12 education reacted to the mandatory full‐time online learning during the COVID‐19 pandemic. For this purpose, we conducted a province‐wide survey study in which the online learning experience of 1,170,769 Chinese students was collected from the Guangdong Province of China.

  23. Mid-to-Late-Life Anxiety and Sleep during Initial Phase of COVID-19

    This study examined associations between COVID-19-related anxiety and sleep in middle-aged and older adults and tested whether these varied by age or sex. In June/July 2020, middle-aged/older adults aged 50+ (n = 277, 45% women, Mage = 64.68 ± 7.83) in the United States completed measures of sleep and COVID-19-related anxiety. Multiple regressions examined whether anxiety was independently ...

  24. Students' online learning challenges during the pandemic and how they

    Finally, there are those that focused on students' overall online learning experience during the COVID-19 pandemic. One such study was that of Singh et al. , who examined students' experience during the COVID-19 pandemic using a quantitative descriptive approach. Their findings indicated that students appreciated the use of online learning ...